98%
921
2 minutes
20
The practical application of AZIBs is hindered by problems such as dendrites and hydrogen evolution reactions caused by the thermodynamic instability of Zinc (Zn) metal. Modification of the Zn surface through interface engineering can effectively solve the above problems. Here, sulfonate-derivatized graphene-boronene nanosheets (G&B-S) composite interfacial layer is prepared to modulate the Zn plating/stripping and mitigates the side reactions with electrolyte through a simple and green electroplating method. Thanks to the electronegativity of the sulfonate groups, the G&B-S interface promotes a dendrite-free deposition behavior through a fast desolvation process and a uniform interfacial electric field mitigating the tip effect. Theoretical calculations and QCM-D experiments confirmed the fast dynamic mechanism and excellent mechanical properties of the G&B-S interfacial layer. By coupling the dynamics-mechanics action, the G&B-S@Zn symmetric battery is cycled for a long-term of 1900 h at a high current density of 5 mA cm , with a low overpotential of ≈30 mV. Furthermore, when coupled with the LMO cathode, the LMO//G&B-S@Zn cell also exhibits excellent performance, indicating the durability of the G&B-S@Zn anode. Accordingly, this novel multifunctional interfacial layer offers a promising approach to significantly enhance the electrochemical performance of AZIBs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754080 | PMC |
http://dx.doi.org/10.1002/advs.202306656 | DOI Listing |
Discov Nano
September 2025
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Promoter-assisted chemical vapor deposition (CVD) has emerged as a robust strategy for the low-temperature synthesis of diverse transition metal dichalcogenides (TMDs). In these processes, promoter-induced intermediates facilitate specific reaction pathways, enabling controlled growth via vapor-solid-solid (VSS) or vapor-liquid-solid (VLS) modes. While previous studies have primarily focused on transition metal precursors, growth pathways involving engineered chalcogen-based intermediates remain underexplored due to their volatility and low melting points.
View Article and Find Full Text PDFSmall
September 2025
College of Science, Nanjing Forestry University, Nanjing, 210037, China.
Inspired by the rigid exoskeleton and elastic inner tissues of crustaceans, a bilayer gel integrating high-strength rigidity and soft cushioning with high interfacial adhesion (1060 ± 40 J m ) is developed via a stepwise solid-liquid phase crosslinking strategy. Herein, a prefrozen high-concentration polyvinyl alcohol (PVA) solution forms a solid-state structural framework, while a subsequently cast low-concentration PVA solution generates a flexible layer. Partial thawing of the frozen gel during casting triggers molecular chain interpenetration at the interface, synergistically enhanced by controlled molecular penetration, freeze-thaw cycles, and salt-induced crystallization.
View Article and Find Full Text PDFSmall
September 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
This study presents a novel carbazole derivative functionalized with hydroxy diphosphonic acid groups (HDPACz) as an efficient annealing-free hole transport layer (HTL) through strong bidentate anchoring to indium tin oxide (ITO). Compared to conventional mono-phosphonic acid counterparts, HDPACz demonstrates superior ITO surface coverage and interfacial dipole, effectively modulating the work function of ITO. Theoretical calculations reveal enhanced adsorption energy (-3.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Organic Electronic Materials Laboratory, Department of Information Display, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.
Solution-processed phosphorescent inverted organic light-emitting diodes (s-IOLEDs) have garnered significant attention due to their excellent stability and high performance. However, frequently used inorganic electron transport layers usually cause exciton dissociation at the emitting layer interface, leading to low device efficiency and severe efficiency roll-off. In this work, we designed a cross-linkable triazine-grafted electron transport copolymer (PPDPT--PBCB) with a high triplet energy (3.
View Article and Find Full Text PDFAdv Mater
September 2025
NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan, 430070, China.
Thermoelectric nanoplates derived from anisotropic van der Waals (vdW) materials such as BiTe are pivotal for flexible electronics and microscale thermal management. Their performance critically depends on grain boundary (GB) microstructure, but the atomic-scale mechanisms governing grain growth in these highly anisotropic systems remain elusive. This particularly concerns the competition between individual nanoplate reshaping driven by facet stabilization and collective merging at GBs.
View Article and Find Full Text PDF