98%
921
2 minutes
20
The environmental risks of trifloxystrobin (TR) have drawn attention because of its multiplex toxicity on aquatic organisms, but few studies have paid close attention to its chronic toxicity at environmental concentrations. In present study, histopathology, metabolomics and transcriptomics were comprehensively performed to investigate the toxic effects and biological responses on adult zebrafish after exposure to 0.1, 1 and 10 μg/L TR for 21 d. Results demonstrated long-term exposure of TR affected zebrafish liver, ovary and heart development. Metabolomics revealed 0.1, 1 and 10 μg/L TR simultaneously decreased the carbohydrates enriched in glucose metabolism and ABC transporters pathways, such as glycogen, lactose, lactulose, maltose, maltotriose, d-trehalose, while 1 μg/L and 10 μg/L TR significantly increased many metabolites related to glycerophospholipid and sphingolipid metabolism in zebrafish liver. Transcriptomics showed TR activated the transcription of the Abcb4, Abcb5 and Abcb11 involved in ABC transporters, Pck1, Pfk, Hk, Gyg1a and Pygma related to glucose metabolism, as well as the Lpcat1, Lpcat4, Gpat2, Cers and Sgms in glycerophospholipid and sphingolipid metabolism. Results further demonstrated high concentration of TR strongly affected the DNA repair system, while low dose of TR caused pronounced effects on cardiomyocytes and oocyte regulation pathways at transcriptional levels. The results indicated the abnormal liver, gonad and heart development caused by TR might be ascribed to the disturbance of carbohydrates and lipid metabolism mediating by the Abcb4, Abcb5 and Abcb11 ABC transporters, and long-term exposure of environmental concentration of TR was sufficient to affect zebrafish normal metabolism and development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140747 | DOI Listing |
mBio
September 2025
School of Life Sciences, University of Warwick, Coventry, United Kingdom.
The FtsEX-EnvC-AmiA/B system is a key component of the cell division machinery that directs breakage of the peptidoglycan layer during separation of daughter cells. Structural and mechanistic studies have shown that ATP binding by FtsEX in the cytoplasm drives periplasmic conformational changes in EnvC, which lead to the binding and activation of peptidoglycan amidases such as AmiA and AmiB. The FtsEX-EnvC amidase system is highly regulated to prevent cell lysis with at least two separate layers of autoinhibition that must be relieved to initiate peptidoglycan hydrolysis during division.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.
Unlabelled: Marine heterotrophic prokaryotes initially release extracellular enzymes to cleave large organic molecules and then take up ambient substrates via transporters. Given the direct influence of extracellular enzymes on nutrient availability, understanding their diversity and dynamics is crucial in comprehending microbial interactions and organic matter cycling in aquatic ecosystems. In this study, metagenomics was employed to investigate the functional diversity and dynamics of extracellular enzymes and transporters in coastal waters over a 22-day period.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Animal Genetics, University of Tuebingen, 72076 Tuebingen, Germany.
Background: Membrane transport proteins are critical determinants of systemic and intracellular drug levels, thereby contributing substantially to drug response and/or adverse drug reactions. Therefore, the U.S.
View Article and Find Full Text PDFInsect Sci
September 2025
State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.
The ectoparasitic honeybee (Apis mellifera) mite Tropilaelaps mercedesae represents a serious threat to Asian apiculture and a growing concern for global beekeeping due to its high reproductive capacity and host adaptability. However, the regulatory mechanisms underlying its host adaptation across life stages remain poorly characterized. Here, we performed integrated transcriptomic, proteomic, and metabolomic analyses of female mites at 4 key postembryonic developmental stages: protonymphs, deutonymphs, mature adults, and reproductive adults.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA.
We aimed to characterize peritoneal macrophages from two novel mouse models that enable macrophage-specific overexpression of ABCA1 and ABCG1 via Cre recombinase. Since ABCA1/ABCG1 expression in macrophages is acknowledged to be anti-atherogenic, overexpression of these two transporters may result in a potent atheroprotective effect. However, there are no current animal models that permit overexpression of ABCA1/ABCG1 to precisely occur in macrophages.
View Article and Find Full Text PDF