98%
921
2 minutes
20
Purpose: Merkel cell carcinoma (MCC) is a neuroendocrine carcinoma originating in the skin. Studies are needed to determine the mechanisms of immune escape in patients with MCC, and malignant cell conditions that promote immune evasion.
Methods: We used Single-cell RNA sequencing (scRNA-seq) to determine cellular features associated with MCC disease trajectory. A longitudinal multi-omics study was performed using scRNA-seq data of peripheral blood harvested from four-time points. Six major cell types and fifteen cell subgroups were identified and confirmed their presence by expression of characteristic markers. The expression patterns and specific changes of different cells at different time points were investigated. Subsequently, bulk RNA data was used to validate key findings.
Results: The dynamic characteristics of the cells were identified during the critical period between benign improvement and acquisition of resistance. Combined with the results of the validation cohort, the resistance program expressed in the relapse stage is mainly associated with T cell exhaustion and immune cell crosstalk disorder. Coinciding with immune escape, we also identified a decrease non-classical monocytes and an expansion of classical monocytes with features of high inflammation and immune deficiency.
Conclusion: Changes in cellular status, such as depletion of T cells and dysregulation of B cell proliferation and differentiation, may lead to drug resistance in MCC patients. Meanwhile, the widespread decreased antigen presentation ability and immune disorders caused by deletion of MHC class II gene expression should not be ignored.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659156 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293922 | PLOS |
Reprod Biol
September 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 218 Jixi Road, Hefei Anhui230022, China; Key Laboratory of Population Health Across
Current research indicates that polyethylene terephthalate microplastics (PET-MPs) may significantly impair male reproductive function. This study aimed to investigate the potential molecular mechanisms underlying this impairment. Potential gene targets of PET-MPs were predicted via the SwissTargetPrediction database.
View Article and Find Full Text PDFStem Cell Res
September 2025
Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:
Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.
View Article and Find Full Text PDFMutat Res Rev Mutat Res
September 2025
Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:
To maintain genomic stability, cells have evolved complex mechanisms collectively known as the DNA damage response (DDR), which includes DNA repair, cell cycle checkpoints, apoptosis, and gene expression regulation. Recent studies have revealed that long non-coding RNAs (lncRNAs) are pivotal regulators of the DDR. Beyond their established roles in recruiting repair proteins and modulating gene expression, emerging evidence highlights two particularly intriguing functions.
View Article and Find Full Text PDFJACC Heart Fail
September 2025
Université de Lorraine, Inserm, Centre d'Investigations Cliniques Plurithématique 1433, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France.
Pathol Res Pract
September 2025
Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China. Electronic address:
Background: Dermal clear cell sarcoma (DCCS) is a rare malignant mesenchymal neoplasm. Owing to the overlaps in its morphological and immunophenotypic profiles with a broad spectrum of tumors exhibiting melanocytic differentiation, it is frequently misdiagnosed as other tumor entities in clinical practice. By systematically analyzing the clinicopathological characteristics, immunophenotypic features, and molecular biological properties of DCCS, this study intends to further enhance pathologists' understanding of this disease and provide a valuable reference for its accurate diagnosis.
View Article and Find Full Text PDF