98%
921
2 minutes
20
Introduction: Soil microorganisms are an important component of soil ecosystems with an indispensable role in forest ecosystems. We analyzed the soil microbial diversity in birch secondary forest formed by natural restoration or artificial reconstruction after interference by burning, clear cutting, and gradient cutting, and the undisturbed forest in the Greater Khingan Mountains in China.
Methods: Illumina high-throughput sequencing technology was used to analyze the characteristics of the soil microbial community during the restoration process of birch secondary forest caused by the different types of interference. The relationships between bacteria and fungi were analyzed. The gene functions of the soil bacterial community and the ecological functions of soil fungi were predicted using PICRUSt and FunGuild, respectively.
Results: At the phylum level, the species and quantity of bacteria were more abundant than that of fungi. At the genus level, no obvious differences in the abundance of bacteria were observed; there were obvious differences in the abundance of fungi. Among the eight sample plots, the artificial larch forest belt had the highest bacterial and fungal alpha diversity, which was slightly higher than undisturbed forest, while the other sample plots were significantly lower. Gradual cutting pure birch forest bacteria and fungi had the highest beta diversity, and artificial larch forest belt bacteria and heavy burn sample plot fungi had the lowest beta diversity. Samples from the cutting and burning sample plots were significantly different from the undisturbed forest at the phylum level of Acidobacteriae, Acidimicrobiia, Mortierellomycetes and Sordariomycetes. We found statistical differences in biomarkers between bacterial and fungal communities in undisturbed forest and artificial larch forest belt and burn sample plots. PICRUSt prediction and FunGuild prediction showed that soil bacterial and fungal communities were rich in gene and ecological functions, respectively. In the microbial network, the stability or anti-interference performance of the fungal community was higher than that of bacteria.
Conclusion: Our data reveal the characteristics of the soil microbial community during the restoration process of secondary forest under different types of disturbance, which is of great significance for understanding the role of soil microorganisms in the forest ecological cycle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635414 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1267746 | DOI Listing |
Pest Manag Sci
September 2025
College of Plant Protection, Shenyang Agricultural University, Shenyang, China.
Background: Clubroot, caused by Plasmodiophora brassicae, significantly impacts cruciferous crop production worldwide. Biocontrol is an environmentally friendly and promising approach for clubroot management. Endophytic bacteria are known for their ability to promote plant growth and induce resistance against plant diseases.
View Article and Find Full Text PDFSci Total Environ
September 2025
Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano 39100, Italy. Electronic address:
Nanoparticles (NPs) have emerged as transformative agents in agriculture, offering promising applications in nanofertilizers, nanopesticides, and soil amendments. However, significant knowledge gaps persist regarding the long-term impact of engineered NPs on soil health, including microbial networks and biogeochemical fluxes. Despite their potential to enhance nutrient use efficiency, promote crop resilience, and support sustainable farming, the interactions of NPs with soil matrices, especially their transformations, persistence, and ecological implications, are not fully explored.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China. Electronic address:
Soil antibiotic pollution is a global concern. It has been confirmed that straw or earthworm can enhance microbial degradation of antibiotics in soil. However, in the C/N transformation processes of soil ecosystems, straw and earthworms are closely interconnected.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China. Electronic address:
Residues of veterinary antibiotics such as tylosin in soils can induce selective pressure on indigenous soil microbes and increase the dissemination risk of antibiotic resistance genes (ARGs) by horizontal gene transfer (HGT), which poses a serious threat to both soil and public health. While conventional bioremediation methods face challenges in efficiency and stability, enzyme-based approaches offer promising alternatives. This study developed a novel biochar-immobilized tylosin-degrading enzyme (BIE) system to simultaneously address tylosin contamination and antibiotic resistance gene (ARG) proliferation in agricultural soils.
View Article and Find Full Text PDFPoult Sci
August 2025
Optima Life Sciences Private Limited, Pune Maharashtra, 411009, India.
Antibiotic growth promoters (AGPs) are increasingly subject to global regulatory restrictions and consumer pressure, driving the poultry industry toward antibiotic-free production systems. This shift has accelerated the search for effective alternatives, including innovative microbial additives, organic acids, phytogenics, and other bioactive compounds capable of supporting digestive function and enhancing immune competence in poultry. The present study reported the isolation and characterization of a novel Bacillus velezensis strain, BV-OLS1101, possessing robust probiotic attributes and a distinctive capacity to produce a serine protease subtilisin.
View Article and Find Full Text PDF