98%
921
2 minutes
20
Ferroptosis is a regulated cell death process initiated by iron-dependent phospholipid peroxidation and is mainly suppressed by GPX4-dependent and FSP1-dependent surveillance mechanisms. However, how the ferroptosis surveillance system is regulated during cancer development remains largely unknown. Here, we report that the YTHDC1-mediated mA epigenetic regulation of FSP1 alleviates the FSP1-dependent ferroptosis suppression that partially contributes to the tumor suppressive role of YTHDC1 in lung cancer progression. YTHDC1 knockdown promoted the lung tumor progression and upregulated FSP1 protein level that resulted in ferroptosis resistance of lung cancer cells. Silencing FSP1 abrogated YTHDC1 knockdown-induced proliferation increase and ferroptosis resistance. Mechanistically, YTHDC1 binding to the mA sites in the FSP1 3'-UTR recruited the alternative polyadenylation regulator CSTF3 to generate a less stable shorter 3'-UTR contained FSP1 mRNA, whereas YTHDC1 downregulation generated the longer 3'-UTR contained FSP1 mRNA that is stabilized by RNA binding protein HuR and thus led to the enhanced FSP1 protein level. Therefore, our findings identify YTHDC1 as a tumor progression suppressor in lung cancer and a ferroptosis regulator through modulating the FSP1 mRNA stability and thus suggest a ferroptosis-related therapeutic option for YTHDC1 lung cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733405 | PMC |
http://dx.doi.org/10.1038/s41418-023-01234-w | DOI Listing |
Ann Surg Oncol
September 2025
Department of Thoracic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
J Cancer Res Clin Oncol
September 2025
Inner Mongolia Medical University Affiliated Hospital, Hohhot, 010030, Inner Mongolia, China.
Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
Objective: CircRNAs are involved in cancer progression. However, their role in immune escape in non-small cell lung cancer (NSCLC) remains poorly understood.
Methods: This study employed RIP-seq for the targeted enrichment of circRNAs, followed by Western blotting and RT-qPCR to confirm their expression.
Nat Genet
September 2025
Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.
View Article and Find Full Text PDFNat Prod Bioprospect
September 2025
College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, People's Republic of China.
Five new heterodimers, chalasoergodimers A-E (1-5), and three known heterodimers (6-8), along with four chaetoglobosin monomers (9-12), were isolated from a marine-derived Chaetomium sp. fungus. The structures of new compounds 1-5 were elucidated by HRESIMS, NMR, chemical calculated C NMR and ECD methods.
View Article and Find Full Text PDF