Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chronic hyperglycemia can cause changes in synaptic plasticity of hippocampal cells, which has accelerated the pathological process of cognitive dysfunction. However, the heterogeneity of the hippocampal cell populations under long term high glucose statement remains largely unknown. To mimic chronic hyperglycemia induced cognitive function deficit in vivo, db diabetic mice was selected and Novel Object Recognition(NOR) behavior tests were performed. Based on diabetic induced cognitive impairment(CI) animal model, single-cell RNA sequencing was performed in the hippocampus of CI group (21,379 cells) or control group (20,045 cells), and single cell RNA sequencing was applied, and then the single cell atlas of gene expression was profiled. The comprehensive analysis explicated 18 nerve cell clusters, including 9 distinct sub-clusters, More in-depth analysis of oligodendrocyte precursor cells(OPCs) showed five distinct OPCs sub-clusters including expressing marker gene Lingo2-OPCs, Kcnc1-OPCs, Sst-OPCs, Slc6a1-OPCs and Lhfpl3-OPCs, which seems to be able to proliferate, migrate, and finally differentiate into mature oligodendrocytes and produce myelin. To be noted, differentially expressed genes(DEGs) of the Sst-OPCs sub-cluster indicated that the genes participating in neuroactive ligand-receptor interaction, nervous system development and inflammatory process were up-regulated in diabetic induced cognitive impairment(DCI) groups compared to normal control groups. Integrating the data of neuroplasticity regulation, the 20th top-enriched biological process was associated with neuroplasticity regulation in CI groups compared to control groups. Among these neuroplasticity-related genes, the intersectional gene Sstr2 may play an important role in neuroplasticity regulation. Focused on neuroplasticity regulation and its related specific genes may provide potential new clues for the treatment of diabetes mellitus complicated with cognitive impairment. In summary, we showed the comprehensively transcriptional landscape of hippocampal cells in the db diabetic mice with cognitive dysfunction, distinctive cell sub-clusters and the gene expression characteristics were identified, and also their special functions were proposed, which may give new clues and potential targets for diagnosis and treatment of diabetic encephalopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psyneuen.2023.106412DOI Listing

Publication Analysis

Top Keywords

neuroplasticity regulation
16
induced cognitive
12
synaptic plasticity
8
diabetic encephalopathy
8
chronic hyperglycemia
8
hippocampal cells
8
cognitive dysfunction
8
diabetic mice
8
diabetic induced
8
rna sequencing
8

Similar Publications

Background And Hypothesis: Schizophrenia is linked to hippocampal dysfunction and microglial inflammatory activation. Our prior clinical findings revealed significantly reduced transient receptor potential vanilloid 1 (TRPV1) expression in both first-episode and recurrent schizophrenia patients, with levels inversely correlating with symptom severity, implicating TRPV1 dysfunction in disease progression. Preclinical maternal separation (MS) models recapitulate schizophrenia-like behavioral and synaptic deficits, paralleled by hippocampal microglial TRPV1 downregulation.

View Article and Find Full Text PDF

Background: Clinical and basic research suggests that exercise is a safe behavioral intervention and effective in improving cognition in vascular dementia (VD). However, despite global efforts, there is still no effective method to completely cure VD. This study aimed to investigate the effects of long-term exercise pretreatment on typical VD pathology in a rat model, and further compare the neuroprotective impacts of different exercise modalities on VD rats.

View Article and Find Full Text PDF

Regulation of neurogenesis and neuronal migration by Rrm2 and Timp3 following seizures.

Neurobiol Dis

September 2025

Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA. Electronic address:

Temporal lobe epilepsy is associated with aberrant neurogenesis and ectopic migration of adult-born granule cells (abGCs), yet the molecular mechanisms driving these changes remain poorly defined. Using a pilocarpine-induced mouse model of temporal lobe epilepsy and chemogenetic silencing of abGCs via Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), we previously demonstrated that abGC inhibition reduces both ectopic migration and seizure susceptibility. To identify underlying molecular regulators, we performed RNA sequencing of FACS-isolated abGCs and identified Rrm2 and Timp3 as top candidate genes modulated by seizure activity and neuronal silencing.

View Article and Find Full Text PDF

Mitochondrial membrane potential and compartmentalized signaling: Calcium, ROS, and beyond.

Redox Biol

September 2025

Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA. Electronic address:

Mitochondria are central to cellular function, acting as metabolic hubs that regulate energy transduction to communicate cellular status. A key component of this energetic regulation is the mitochondrial membrane potential (MMP), a charge separation across the inner mitochondrial membrane generated by the electron transport chain. Beyond MMP's canonical role in driving ATP synthesis, MMP acts as a dynamic signaling hub.

View Article and Find Full Text PDF

The contribution of mTOR to the immunopathology of bipolar disorder.

J Neuroimmunol

September 2025

Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil. Electronic address:

The mammalian target of rapamycin (mTOR) has a role in immune regulation and neuroplasticity within the brain, influencing various neurological and psychiatric disorders, including bipolar disorder. mTOR signaling, via two complexes, mTORC1 and mTORC2, modulates immune responses by regulating microglial activation, cytokine production, and T-cell function. Dysregulation of these pathways leads to neuroinflammation, a hallmark of several neurological conditions.

View Article and Find Full Text PDF