98%
921
2 minutes
20
The Chinese indigenous Shiqi (SQ) pigeon and the imported White King (WK) pigeon are two meat-type pigeon breeds of economical and nutritional importance in China. They displayed significant differences in such meat quality traits as intramuscular fat (IMF) content and fatty acid (FA) compositions in the breast muscles. In this study, we aimed to screen candidate genes that could affect fat-related meat quality traits in meat-type pigeons. We investigated the polymorphic variations at the genomic level using double-digest restriction-associated DNA (ddRAD) sequencing in 12 squabs of SQ and WK pigeons that exhibited significant inter-breed differences in IMF content as well as FA and amino acid compositions in the breast muscles, and screened candidate genes influencing fat-related traits in squabs through gene ontology analysis and pathway analysis. By focusing on 6019 SNPs, which were located in genes with correct annotations and had the potential to induce changes in the encoded proteins, we identified 19 genes (, , , , , , , , , , , , , , , , , , ) as candidate genes that could affect fat-related traits in squabs. They were significantly enriched in the pathways of FA metabolism, degradation, and biosynthesis ( < 0.05). Results from molecular docking analysis further revealed that three non-synonymous amino acid alterations, ACAA1(S357N), ACAA2(T234I), and ACACB(H1418N), could alter the non-bonding interactions between the enzymatic proteins and their substrates. Since , and encode rate-limiting enzymes in FA synthesis and degradation, alterations in the enzyme-substrate binding affinity may subsequently affect the catalytic efficiency of enzymes. We suggested that SNPs in these three genes were worthy of further investigation into their roles in explaining the disparities in fat-related traits in squabs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603692 | PMC |
http://dx.doi.org/10.3390/ani13203256 | DOI Listing |
Virchows Arch
September 2025
Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Av. Antônio Carlos, Pampulha, Belo Horizonte, 31270-901, Brazil.
Plasmablastic lymphoma (PBL) is a rare and aggressive non-Hodgkin lymphoma with a poor prognosis and short survival rates. It is classified as a large B-cell lymphoma subtype, but carries a plasmacytic immunophenotype. Therefore, PBL has pathogenetic overlaps with diffuse large B-cell lymphoma not otherwise specified (DLBCL NOS) and plasma cell neoplasms (PCNs).
View Article and Find Full Text PDFSignal Transduct Target Ther
September 2025
Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
Essential tremor (ET) is a common neurological disease that is characterized by 4-12 Hz kinetic tremors of the upper limbs and high genetic heterogeneity. Although numerous candidate genes and loci have been reported, the etiology of ET remains unclear. A novel ET-related gene was initially identified in a five-generation family via whole-exome sequencing, and other variants were identified in 772 familial ET probands and 640 sporadic individuals via whole-genome sequencing.
View Article and Find Full Text PDFJ Genet Genomics
September 2025
State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangd
The genetic basis of early-stage salt tolerance in alfalfa (Medicago sativa L.), a key factor limiting its productivity, remains poorly understand. To dissect this complex trait, we integrate genome-wide association study (GWAS) and transcriptomics (RNA-seq) from 176 accessions within a machine learning based genomic prediction framework.
View Article and Find Full Text PDFDev Biol
September 2025
School of Biological and Chemical Sciences, University of Galway, Biomedical Sciences Building, Newcastle Road, Galway H91 W2TY, Ireland. Electronic address:
The transcription factor Six1 and its co-activator Eya1 play central and varied roles during the development of sensory neurons derived from the cranial placodes in vertebrates. Previous studies suggested that these proteins promote both the maintenance of proliferative neuronal progenitors and neuronal differentiation. Context-specific interactions of Six1 and/or Eya1 with different cofactors are likely to contribute to the activation of distinct target genes during different stages of placodal neurogenesis.
View Article and Find Full Text PDFNeurobiol Dis
September 2025
Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA. Electronic address:
Temporal lobe epilepsy is associated with aberrant neurogenesis and ectopic migration of adult-born granule cells (abGCs), yet the molecular mechanisms driving these changes remain poorly defined. Using a pilocarpine-induced mouse model of temporal lobe epilepsy and chemogenetic silencing of abGCs via Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), we previously demonstrated that abGC inhibition reduces both ectopic migration and seizure susceptibility. To identify underlying molecular regulators, we performed RNA sequencing of FACS-isolated abGCs and identified Rrm2 and Timp3 as top candidate genes modulated by seizure activity and neuronal silencing.
View Article and Find Full Text PDF