Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polymer materials have the advantages of a low Young's modulus and low-cost preparation process. In this paper, a polymer-based optical waveguide pressure sensor based on a Bragg structure is proposed. The change in the Bragg wavelength in the output spectrum of the waveguide Bragg grating (WBG) is used to linearly characterize the change in pressure acting on the device. The polymer-based WBG was developed through a polymer film preparation process, and the experimental results show that the output signal of the device has a sensitivity of 1.275 nm/kPa with a measurement range of 0-12 kPa and an accuracy of 1 kPa. The experimental results indicate that the device already perfectly responds to a pulse signal. It has significant potential application value in medical diagnostics and health testing, such as blood pressure monitoring, sleep quality monitoring, and tactile sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.496427DOI Listing

Publication Analysis

Top Keywords

optical waveguide
8
waveguide bragg
8
bragg grating
8
pulse signal
8
preparation process
8
fabrication characterization
4
characterization polymer
4
polymer optical
4
bragg
4
grating pulse
4

Similar Publications

Seamless integration of active devices into photonic integrated circuits remains a challenge due to the limited accessibility of the optical field in conventional waveguides, which tightly confine light within their cores. In this study, we propose a two-dimensional (2D) ultrathin waveguide as a photonic platform that enables efficient interaction between guided light and surface-mounted devices by supporting optical modes dominated by evanescent fields. We show that the guided light in a monolayer MoS film propagates over millimeter-scale distances with more than 99.

View Article and Find Full Text PDF

The detection of biological nanoparticles (NPs), such as viruses and extracellular vesicles (EVs), plays a critical role in medical diagnostics. However, these particles are optically faint, making microscopic detection in complex solutions challenging. Recent advancements have demonstrated that distinguishing between metallic and dielectric signals with twilight off-axis holographic microscopy makes it possible to differentiate between metal and biological NPs and to quantify complexes formed from metal and biological NPs binding together.

View Article and Find Full Text PDF

Vertically Stacked Boron Nitride/Graphene Heterostructure for Tunable Antiresonant Hollow-Core Fiber.

J Am Chem Soc

September 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Incorporating atomically thin two-dimensional (2D) materials with optical fibers expands their potential for optoelectronic applications. Recent advancements in chemical vapor deposition have enabled the batch production of these hybrid fibers, paving the way for practical implementation. However, their functionality remains constrained by the integration of a single 2D material, restricting their versatile performance.

View Article and Find Full Text PDF

Highly efficient optoelectronic devices of ultrasmall sizes are demanded as building blocks of next-generation integrated circuits, where tunable color enhances the feasibility of various applications. Here, we realize tunable multicolor nanolasers using disk-shaped axial heterostructures composed of III-nitride materials (GaN/InGaN/GaN), leveraging the optical confinement effect and active waveguiding. In heterostructure nanodisks, the development of exciton-polariton induces unique features near the resonance regime, and the formation of whispering-gallery modes facilitates optical gain processes for the polaritonic lasing of GaN.

View Article and Find Full Text PDF

On-chip near-infrared gas sensing based on slow light mode multiplexing in photonic crystal waveguides.

Lab Chip

September 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.

Photonic crystal slow light waveguides present a breakthrough in the manipulation of optical signals and enhancing the interaction between light and matter. In particular, two-dimensional (2D) photonic crystal waveguides (PCWs) on silicon photonic chips hold promise in improving the sensitivity of on-chip gas sensors. However, the development of the gas sensors based on 2D PCWs suffers from a high propagation loss and a narrow slow light bandwidth.

View Article and Find Full Text PDF