Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbon materials used for catalysis in advanced oxidation processes tend to be obtained from cheap and readily available raw materials. We constructed a carbon material, OSC@FeO, by loading FeO onto the pyrolyzed hazardous waste oily sludge. OSC@FeO was then used to activate peroxymonosulfate (PMS) for the removal of tetracycline hydrochloride (TTCH) from water. At 298 K, 0.2 g⋅L of catalyst and 0.3 g⋅L of PMS, the reaction rate constant of the OSC@I-2/PMS system reached 0.079 min, with a TTCH removal efficiency of 92.6%. The degradation efficiency of TTCH remained at 81% after five cycles. The specific surface area and pore volume of OSC@I-2 were 263.9 m⋅g and 0.42 cm⋅g, respectively, which improved the porous structure of the carbon material and provided more active points, thus improving the catalytic performance. N and S were doped into the oily sludge carbon due to the presence of N- and S-containing compounds in the raw oily sludge. N and S doping led to more electron-rich sites with higher negative charges in OSC@I-2 and gave the oily sludge carbon a higher affinity to PMS, thereby promoting its ability to activate PMS. Sulfate radicals (SO‾) played a dominant role in the degradation of TTCH, with demethylation and the breaking of double bonds being a possible degradation pathway. A biotoxicity test showed that the microbial toxicity of the degradation intermediates was significantly reduced. This work provides a strategy for the application of PMS-based catalysts derived from waste carbon resources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119187DOI Listing

Publication Analysis

Top Keywords

oily sludge
20
tetracycline hydrochloride
8
carbon material
8
sludge carbon
8
carbon
6
oily
5
sludge
5
degradation
5
activation peroxymonosulfate
4
peroxymonosulfate biochar-supported
4

Similar Publications

Research Progress of Surfactant-Free Microemulsions: A Review.

Crit Rev Anal Chem

September 2025

Department of Civil Engineering, Architecture and Engineering, Northeast Petroleum University, Daqing, China.

Surfactant is usually considered the key component to form microemulsion. surfactant-based microemulsion (SBME) can also be called traditional microemulsion. It has a wide range of applications.

View Article and Find Full Text PDF

Petroleum waste pollution presents a major environmental challenge, highlighting the need for sustainable and efficient remediation strategies. Bioremediation has emerged as a promising eco-friendly solution that utilizes microbial communities to degrade harmful hydrocarbons. Among various bioremediation approaches, composting is an established organic waste treatment method that has been effectively adapted for managing petroleum-contaminated sludge.

View Article and Find Full Text PDF

An Amphiphilic Ionic Polymer-Modified Wood-Based Membrane for Efficient Oil-Water Separation.

Langmuir

August 2025

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China.

Global water security is facing unprecedented challenges, among which oil spills, illegal discharge of industrial wastewater, and uncontrolled discharge of oily wastewater from domestic sewage are particularly prominent. These sources of pollution not only lead to the continuous deterioration of water resource quality but also pose multiple threats to the ecological balance and human health and safety. In this background, the development of efficient oily wastewater separation and recycling technologies has become a key topic to be solved in the current environmental engineering field.

View Article and Find Full Text PDF

Multifunctional superhydrophobic nanocellulose-based membranes for self-cleaning, oil/water separation, photocatalytic degradation, and anti-biofouling are in great demand for sewage treatment. This demand led to the in situ deposition of Cu-MOF micro/nanoparticles on the surface of CB membranes, followed by stearic acid (STA) modification to provide excellent superhydrophobicity, which enables effective oil/water separation, photocatalytic degradation, and anti-biofouling. The CB/Cu-MOF/STA membranes created in this manner demonstrated good superhydrophobicity with a water contact angle of 160 ± 2° and superoleophobicity with an oil contact angle of 0°.

View Article and Find Full Text PDF

This study examined the influence of steel slag powder as an additive on the pyrolysis characteristics of sludge, including the activation energy of the reactions, in addition to inhibiting the escape of nitrogen-containing and sulfur-containing gases, while improving the bio-oil fraction. There were three methods used to calculate the average activation energy of sludge: Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, and Friedman. It can be concluded that the addition of steel slag powder accelerated sludge pyrolysis and that the kinetic modeling during the primary pyrolysis stages occurred through a reaction-level mechanism model (Fn).

View Article and Find Full Text PDF