Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The conversion of CO into ethanol with renewable H has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration of the key intermediates, therefore altering the reaction network for targeted synthesis. Herein, we describe a catalytic system in which a carbon buffer layer is employed to tailor the electronic properties of the ternary ZnO -Fe C -Fe O , in which the electron-transfer pathway (ZnO →Fe species or carbon layer) ensures the appropriate adsorption strength of -CO* on the catalytic interface, facilitating C-C coupling between -CH * and -CO* for ethanol synthesis. Benefiting from this unique electron-transfer buffering effect, an extremely high ethanol yield of 366.6 g  kg  h (with CO of 10 vol % co-feeding) is achieved from CO hydrogenation. This work provides a powerful electronic modulation strategy for catalyst design in terms of highly oriented synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202311786DOI Listing

Publication Analysis

Top Keywords

buffer layer
8
zno -fe
8
-fe -fe
8
ethanol synthesis
8
electronic properties
8
adsorption strength
8
synthesis
5
carbon-based electron
4
electron buffer
4
layer zno
4

Similar Publications

Resistance arteries, which include small arteries and arterioles, play essential roles in regulating blood pressure and tissue perfusion. Dysfunction in these arteries can lead to various cardiovascular conditions such as hypertension, atherosclerosis, and heart failure, as well as neurovascular conditions. The examination of human resistance arteries is crucial for understanding cardiovascular disease mechanisms and developing targeted therapeutic strategies.

View Article and Find Full Text PDF

Aluminum-doped copper indium gallium selenide/sulfide (CIGAS) is a favorable absorber material for solar cell applications; however, the number of reports on CIGAS solar cells currently remains limited. In this study, we therefore employed SCAPS-1D software for the theoretical modeling of CIGAS thin film solar cells and investigated the effect of material properties and device configurations on solar cell photovoltaic (PV) parameters. Initially, key parameters such as thickness and charge carrier concentrations of each layer used in CIGAS PV devices were studied and optimized to obtain suitable conditions for high device performance.

View Article and Find Full Text PDF

Genetic Entanglement Enables Ultrastable Biocontainment in the Mammalian Gut.

ACS Synth Biol

September 2025

Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.

Imbalances in the mammalian gut are associated with acute and chronic conditions, and using engineered probiotic strains to deliver synthetic constructs to treat them is a promising strategy. However, high rates of mutational escape and genetic instability limit the effectiveness of biocontainment circuits needed for safe and effective use. Here, we describe STALEMATE (equence enngd ulti lyered geneic buffring), a dual-layered failsafe biocontainment strategy that entangles genetic sequences to create pseudoessentiality and buffer against mutations.

View Article and Find Full Text PDF

Well-defined heterostructures exhibit emergent properties distinct from their single-phase constituents, enabling advances across diverse technologies. Typically classified as self-assembly and epitaxy, heterointerface formation is generally assumed to proceed unidirectionally and irreversibly at bulk scales. Here we use in situ electron microscopy at 298 K to visualize the heterostructure formation from nanoscale mixtures of intrinsically immiscible salts at ambient conditions, NaCl and NaI.

View Article and Find Full Text PDF

Surface modification of poly(ε-caprolactone) (PCL) to facilitate interactions with high pI proteins is a strategy used to enhance 3D PCL scaffolds for tissue engineering applications. The approach of the current study was to firstly optimise the surface modification on 2D films and then apply to 3D scaffolds. Melt-pressed PCL films were grafted with 2-aminoethyl methacrylate gamma radiation induced grafting to introduce amine functional groups to the substrate surfaces.

View Article and Find Full Text PDF