Chitosan-based coating enriched with melezitose alters primary metabolites in fresh-cut pineapple during storage.

J Biosci Bioeng

Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; Osaka University-Shimadzu Om

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Demand for minimally processed fresh fruit is increasing due to its convenience. However, the distribution of fresh-cut fruits is limited because of their short shelf life. Pineapple, a popular tropical fruit, sold in fresh-cut form has a shelf life of approximately 5-7 days at 4 °C. Chitosan, an edible coating, is commonly used to prolong the shelf life of food products. Similarly, the sugar melezitose has been reported to change during pineapple ripening and may play a role in regulating the shelf life of pineapple. However, the direct effects of this sugar have yet to be studied. The objective of this study was to investigate the effect of chitosan coating with melezitose to prolong the shelf life of fresh-cut pineapple. Full-ripe Bogor pineapples from Okinawa, Japan, were cut into cubes and soaked in either chitosan 1.25%, melezitose 5 mg/L, or chitosan+melezitose and stored for 5 days under dark conditions (23.6 ± 0.5 °C; relative humidity, 40.0 ± 10.4%). None of the treatments significantly altered the weight loss or color changes in the fresh-cut fruit. However, treatment significantly altered the primary metabolites, namely quinic acid, sucrose, and xylitol based on orthogonal projection to latent structures data with the screening from p-value score. Moreover, cell-wall metabolism is possibly affected in pineapple cut fruit treated by chitosan-melezitose as shown from metabolite sets enrichment analysis. This study showed that chitosan added with melezitose might have potential to prolong the shelf-life of fresh-cut pineapple, providing a basis for further post-harvest studies of the whole pineapple fruit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2023.08.002DOI Listing

Publication Analysis

Top Keywords

shelf life
20
fresh-cut pineapple
12
primary metabolites
8
pineapple
8
life pineapple
8
prolong shelf
8
fresh-cut
6
melezitose
5
fruit
5
shelf
5

Similar Publications

Development of chitosan coating loaded with solvothermal-prepared cerium oxide for banana preservation.

Int J Biol Macromol

September 2025

Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam. Electronic address:

In this work, cerium oxide nanoparticles prepared through the solvothermal route (sCeO NPs) are integrated into chitosan (CH) matrices to serve as an efficient coating for banana preservation. The morphological, structural, mechanical, and water-barrier properties of nanocomposite films integrated with various sCeO concentrations were investigated to determine the optimal sCeO NPs concentration within the film matrix. Furthermore, the sensory evaluation and physicochemical properties of the coated and uncoated bananas, including visual attributes, peel browning, CO production, firmness, weight loss, ripening rate (based on total soluble solids and titratable acidity), and pH, are considered during storage.

View Article and Find Full Text PDF

Fresh walnuts are prone to moisture loss and spoilage after harvest, leading to reduced appearance and sensory quality. In this study, a multifunctional chitosan (CS)-based film was fabricated by incorporating a bacterial cellulose/oregano essential oil (BC/OEO) Pickering emulsion, with hydrogen bonding promoting cohesive matrix integration. The film's physicochemical properties, along with its antimicrobial and antioxidant activities, were systematically evaluated.

View Article and Find Full Text PDF

Biofortification of tomatoes with beta-carotene through targeted gene editing.

Int J Biol Macromol

September 2025

Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China. Electronic address:

Vitamin A deficiency is one of the most severe micronutrient-related health issues worldwide. Tomatoes, a widely cultivated crop for their adaptability, nutritional value, and lycopene content (a beta-carotene precursor), are ideal candidates for biofortification. In this study, CRISPR-mediated knockout mutants (cr-SlLCYe and cr-SlBCH) were generated to enhance the precursor supply to the β-carotene biosynthetic pathway and reduce its degradation.

View Article and Find Full Text PDF

Environmentally friendly food packaging has emerged as a viable strategy to replace traditional plastic films. In this study, eugenol Pickering emulsion was constructed with konjac glucomannan (KGM) and tragacanth gum (GT) as stabilizers, and was introduced into the KGM/chitosan (CS) composite film by electrostatic action to develop a new type of active packaging film. Interfacial characterization revealed optimal emulsion stability at a 1:5 KGM-to-GT mass ratio.

View Article and Find Full Text PDF

Sulforaphene (SFE) is a bioactive isothiocyanate, known for its cancer-preventive, anti-inflammatory, and antioxidant properties. However, the application of SFE is severely limited by its poor stability. Hydroxypropyl methylcellulose (HPMC), an amphiphilic carbohydrate polymer, has potentials to enhance the stability of SFE and the loading capacity.

View Article and Find Full Text PDF