Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Per- and polyfluoroalkyl substances (PFAS) have been identified as environmental contributors to adverse birth outcomes. One potential mechanistic pathway could be through PFAS-related inflammation and cytokine production. Here, we examined associations between a PFAS mixture and inflammatory biomarkers during early and late pregnancy from participants enrolled in the Atlanta African American Maternal-Child Cohort ( = 425). Serum concentrations of multiple PFAS were detected in >90% samples at 8-14 weeks gestation. Serum concentrations of interferon-γ (IFN-γ), interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) were measured at up to two time points (8-14 weeks and 24-30 weeks gestation). The effect of the PFAS mixture on each inflammatory biomarker was examined using quantile g-computation, Bayesian kernel machine regression (BKMR), Bayesian Weighted Sums (BWS), and weighted quantile sum (WQS) regression. Across all models, the PFAS mixture was associated with increased IFN-γ, IL-10, and TNF-α at both time points, with the strongest effects being observed at 24-30 weeks. Using quantile g-computation, increasing concentrations of a PFAS mixture were associated with a 29% (95% confidence interval = 18.0%, 40.7%) increase in TNF-α at 24-30 weeks. Similarly, using BWS, the PFAS mixture was associated with increased TNF-α at 24-30 weeks (summed effect = 0.29, 95% highest posterior density = 0.17, 0.41). The PFAS mixture was also positively associated with TNF-α at 24-30 weeks using BKMR [75th vs 50th percentile: 17.1% (95% credible interval = 7.7%, 27.4%)]. Meanwhile, PFOS was consistently the main drivers of overall mixture effect across four methods. Our findings indicated an increase in prenatal PFAS exposure is associated with an increase in multiple pro-inflammatory cytokines, potentially contributing to adverse pregnancy outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900195PMC
http://dx.doi.org/10.1021/acs.est.3c04688DOI Listing

Publication Analysis

Top Keywords

pfas mixture
24
24-30 weeks
20
mixture associated
12
tnf-α 24-30
12
pfas
10
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
substances pfas
8
inflammatory biomarkers
8
atlanta african
8

Similar Publications

Occurrence, distribution characteristics, and potential ecological risks of perfluorinated compounds in major estuaries and adjacent offshore areas in Hainan Island.

Mar Environ Res

September 2025

Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China; Hainan International Joint Research Center for Reef Ecology, School of Ecology, Hainan University, Haikou, 570228, China. Electronic address:

Per- and polyfluoroalkyl substances (PFASs) have gained attention due to their chemical stability, bioaccumulation potential, and toxicity. The ocean serves as the ultimate sink for these compounds in the global environment. With the rapid development of the Hainan Free Trade Port, environmental pollution on Hainan Island has consequently become more pronounced.

View Article and Find Full Text PDF

Prenatal exposure to per- and polyfluoroalkyl substances: Association with child behavior in the environmental influences on child health outcomes (ECHO) Cohort.

Environ Int

August 2025

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA. Electr

Background: Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may adversely impact child neurodevelopment; however, epidemiologic findings remain inconclusive because of small sample sizes, limited exposure variability, and differing neurodevelopmental measures. We aimed to investigate the relationship between prenatal PFAS exposure and child behavior.

Methods: We pooled data from nine study sites in the nationwide Environmental influences on Child Health Outcomes (ECHO) Cohort.

View Article and Find Full Text PDF

Prenatal exposure to a mixture of per- and polyfluoroalkyl substances (PFAS) and lung function and immune-related outcomes among males in childhood and young adulthood.

Environ Res

September 2025

Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark; Department of Public Health, Section of Environmental Health, University of Copenhagen, Denmark.

Background: Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may influence lung and immune system development, but previous epidemiological studies are inconclusive and have not extended into young adulthood.

Objective: To examine associations between prenatal exposure to a mixture of PFAS and respiratory and immune-related outcomes in a cohort of males.

Methods: We studied 866 males with maternal pregnancy plasma measured for 15 PFAS, triclosan, and nine phthalate metabolites used as a proxy for prenatal exposure.

View Article and Find Full Text PDF

Exposure to per- and polyfluoroalkyl substances during fetal development and risk of testicular germ cell cancer in adulthood.

Environ Int

August 2025

Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet,

Background: Testicular germ cell cancer (TGCC) originates during fetal life. Fetal exposure to environmental chemicals may contribute to its development, but epidemiological data are lacking. We investigated per- and polyfluoroalkyl substances (PFAS), which can act as endocrine disruptors during fetal development, and TGCC risk in adulthood.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a noteworthy global health issue affecting 10% of the world's populace. It is increasingly linked to environmental exposures; however, the interplay of toxic metals, per- and polyfluoroalkyl substances (PFAS), and essential elements has not been fully elucidated. This cross-sectional study analyzed 5800 out of the 9245 participants from the 2017-2018 NHANES dataset to evaluate the combined effect of PFAS, essential elements, and toxic metals on CKD using logistic regression and advanced environmental mixture models, namely, Bayesian Kernel Machine Regression (BKMR), quantile g-computation (qgcomp), and Weighted Quantile Sum (WQS) regression.

View Article and Find Full Text PDF