98%
921
2 minutes
20
The increasing footprints of lithium (Li) in agroecosystems combined with limited recycling options have raised uncertain consequences for important crops. Nitrogen (N)-fixation by legumes is an important biological response process, but the cause and effect of Li exposure on plant root-nodule symbiosis and biological N-fixation (BNF) potential are still unclear. Soybean as a model plant was exposed to Li at low (25 mg kg), medium (50 mg kg), and high (100 mg kg) concentrations. We found that soybean growth and nodulation capacity had a concentration-dependent response to Li. Li at 100 mg kg reduced the nodule numbers, weight, and BNF potential of soybean in comparison to the low and medium levels. Significant shift in soybean growth and BNF after exposure to Li were associated with alteration in the nodule metabolic pathways involved in nitrogen uptake and metabolism (urea, glutamine and glutamate). Importantly, poor soybean nodulation after high Li exposure was due in part to a decreased abundance of bacterium Ensifer in the nodule bacterial community. Also, the dominant N-fixing bacterium Ensifer was significantly correlated with carbon and nitrogen metabolic pathways. The findings of our study offer mechanistic insights into the environmental and biological impacts of Li on soybean root-nodule symbiosis and N-acquisition and provide a pathway to develop strategies to mitigate the challenges posed by Li in agroecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166438 | DOI Listing |
Curr Biol
September 2025
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia.
A new study shows that sucrose allocation within soybean roots by the sucrose transporter GmSWEET3c promotes rhizobial infection, nodulation, and symbiotic nitrogen fixation.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research In
This study aimed to elucidate the effects of arsenic species [As(III)/As(V)] and cadmium [Cd(II)] on nitrification and nitrogen fixation in soybean (Glycine max (L.) Merrill) cultivation, and to identify nitrogen cycle disruption mechanisms in realistic soil environments with a focus on soil-metal-plant-microbe interactions. We examined heavy metal(loid)s uptake in plant tissues, changes in nitrogen species in porewater, nitrogenase activity, the contents of essential trace metals (Mo and Fe) in nitrogenase, and nitrogen-related microbial communities.
View Article and Find Full Text PDFJ Integr Plant Biol
September 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Center for Soybean Improvement, National Innovation Platform for Soybean Breeding and Industry-Education Integration, Key Laboratory for Biology and Genetic Improvement o
Soybean is an important source of oil, protein, and feed. However, its yield is far below that of major cereal crops. The green revolution increased the yield of cereal crops partially through high-density planting of lodging-resistant semi-dwarf varieties, but required more nitrogen fertilizers, posing an environmental threat.
View Article and Find Full Text PDFPLoS One
August 2025
Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
The divalent cation, Magnesium (Mg2+), is an essential mineral element for plant growth and development. Magnesium transporter (MGT) plays a vital role in maintaining Mg2 + homeostasis within plant cells. Although extensive research has been conducted in several crop species, no comprehensive study has yet been carried out on the MGT gene family in soybean (Glycine max L.
View Article and Find Full Text PDFPlants (Basel)
August 2025
Hainan Institute, Zhejiang University, Sanya 572025, China.
GATA transcription factors are crucial for plant development and environmental responses, yet their roles in plant evolution and root nodule symbiosis are still not well understood. This study identified GATA genes across the genomes of 77 representative plant species, revealing that this gene family originated in Charophyta and significantly expanded in both gymnosperms and angiosperms. Phylogenetic analyses, along with examinations of conserved motifs and cis-regulatory elements in and , clearly demonstrated structural and functional divergence within the GATA family.
View Article and Find Full Text PDF