98%
921
2 minutes
20
In this study, single Ni clusters (two Ni atoms bridged by a lattice oxygen) are successfully synthesized on monolayered CuO. They exhibit a remarkable activity toward low-temperature CO thermal dissociation, in contrast to cationic Ni atoms that nondissociatively adsorb CO and metallic Ni ones that are chemically inert for CO adsorption. Density functional theory calculations reveal that the Ni clusters can significantly alter the spatial symmetry of their unoccupied frontier orbitals to match the occupied counterpart of the CO molecule and enable its low-temperature dissociation. This study may help advance single-cluster catalysis and exploit the unexcavated mechanism for low-temperature CO activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c06845 | DOI Listing |
Carbohydr Res
September 2025
Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama, 338-8570, Japa
Multivalent interactions between lectins and glycans are crucial for biological recognition; however, predicting functional inhibition based on binding affinity remains challenging. Herein, we investigated a series of structurally defined N-acetylglucosamine (GlcNAc)-functionalized dendrimers (1a-1c and 2a-2c) to examine how spatial orientation and temperature influenced the inhibition of wheat germ agglutinin (WGA). Using enzyme-linked lectin assays (ELLAs), we observed biphasic inhibition profiles for all the dendrimers, characterized by an initial enhancement of WGA binding at low concentrations, followed by effective inhibition at higher concentrations.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
To elucidate possible mechanisms of nitrogen chemistry between ammonia (NH) and ethanol, the potential pathways of ethanol radicals (Wa, Wb, and Wc) following H-abstraction by NH radicals were primarily investigated including HCN addition, H-transfer, and dissociation reactions by quantum chemical calculations. The rate constants were solved in the master equation based on RRKM and TST theory and fitted to the Arrhenius equation. The results demonstrate that H-abstraction from CHOH by NH at the b-site is the most competitive, facilitating subsequent HCN addition.
View Article and Find Full Text PDFJ Comput Chem
September 2025
Institute of Atomic and Molecular Physics, Jilin University, Changchun, China.
Quantum chemical calculations have been performed to investigate the structure, stability, and bonding in noble gas (Ng) bound BeB complexes. The present results show that BeB , a charge-separated [Be][B][Be] cluster, can employ both its cationic Be center and anionic B center to bind Ng atoms. It can bind a total of seven Ng atoms, resulting in the formation of a highly symmetric (Ng)Be(Ng)B complex, having D point group.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, International Joint Lab of Energy Electrochemistry of the Ministry of Education, Hunan University, Changsha, 410082, China.
The water-gas shift reaction (WGSR) is crucial to the hydrogen economy, which is hampered by the harsh conditions and complicated purification process. In this work, the spatially separated efficient CO conversion and high-purity H production are realized by electrochemistry-accelerated water-gas shift reaction (WGSR) with IrN-RhN dual sites single atom catalysts (IrRh-NC) in high-temperature polymer-electrolyte-membrane electrolyzer. In this reaction, the Ir single atoms in the catalysts can rapidly dissociate HO at an extremely low potential to supply abundant *OH, which ensures the *OH groups bind to the spontaneously adsorbed *CO on neighboring Rh sites to further accelerate CO conversion.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning 121013, China.
It remains critical and challenging to synthesize non-noble metal catalysts with excellent hydrogen evolution reaction (HER) activity in a wide pH range. High-temperature pyrolysis is one of the main methods for catalyst synthesis but can be time-consuming and leads to agglomeration easily. In view of this, molybdenum carbide and molybdenum nitride composite (MoC@MoN) was prepared via CO laser irradiation technology.
View Article and Find Full Text PDF