98%
921
2 minutes
20
Chlorophyll biosynthesis and chloroplast development are essential for photosynthesis and plant growth. Gossypium arboreum, a valuable source of genetic variation for cotton improvement, remains poorly studied for the mechanisms regulating chlorophyll biosynthesis and chloroplast development. Here we created a G. arboreum etiolated leaf and stuntedness (els) mutant that displayed a distinct yellow color of leaves, bracts and stems throughout the whole growth, where chlorophyll accumulation in leaves was reduced and chloroplast development was delayed. The GaCHLH gene, which encodes the H subunit of magnesium chelatase (Mg-chelatase), was screened by MutMap and KASP analysis. Compared to GaCHLH, the gene Gachlh of the mutant had a single nucleotide transition (G to A) at 1549 bp, which causes the substitution of a glycine (G) by a serine (S) at the 517th amino acid, resulting in an abnormal secondary structure of the Gachlh protein. GaCHLH-silenced SXY1 and ZM24 plants exhibited a lower GaCHLH expression level, a lower chlorophyll content, and the yellow-leaf phenotype. Gachlh expression affected the expression of key genes in the tetrapyrrole pathway. GaCHLH and Gachlh were located in the chloroplasts and that alteration of the mutation site did not affect the final target position. The BiFC assay result indicated that Gachlh could not bind to GaCHLD properly, which prevented the assembly of Mg-chelatase and thus led to the failure of chlorophyll synthesis. In this study, the Gachlh gene of G. arboreum els was finely localized and identified for the first time, providing new insights into the chlorophyll biosynthesis pathway in cotton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2023.147712 | DOI Listing |
J Agric Food Chem
September 2025
College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
Protoporphyrinogen oxidase (PPO, EC 1.3.3.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRl). Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Bei
Shade stress alters soybean growth through transcriptomic changes and adaptive responses that optimize light capture and utilization, regulated by a phytohormonal network. This study examined the physiological, morphological, and molecular responses of Guru (shade-tolerant) and Heinong 53 (shade-sensitive) soybean cultivars under 0% (control), 30%, and 70% shade. Results revealed morphological responses where Heinong 53 exhibited greater plant height (52.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Comprehensive Utilization of Crops, Fuzhou, 350002, China.
Melon, a globally important horticultural crop, faces increasing continuous cropping obstacles (CCOs) due to cultivation intensification, with autotoxicity being a primary cause. Autotoxin accumulation severely impacts plant growth, reducing yield and quality. Exogenous silicon (Si) plays an important role in improving plant stress adaptation and is an environmentally friendly element with broad application prospects.
View Article and Find Full Text PDFPlant Sci
September 2025
Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Chin
Chlorophyll is vital for plants, giving them their green color and playing indispensable crucial role in photosynthesis. Chlorophyll-deficient mutants serve as classic models for studying plant pigment metabolism and typically exhibit chlorotic or albino phenotypes, resulting in major impacts on photosynthetic efficiency and growth development of plants. Understanding the mechanisms behind chlorophyll deficiency not only advances basic plant biology but also supports crop breeding strategies aimed at improving yield, stress tolerance, and adaption.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.
The utilization of arbuscular mycorrhizal fungi (AMF) and spp. correlates with improved plant nutrition and the stimulation of systemic plant defenses in response to pathogen challenges. Nonetheless, studies examining the effects of AMF colonization and the foliar application of the isolate Tvd44 on viral infection are limited.
View Article and Find Full Text PDF