Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microcephalic Osteodysplastic Primordial Dwarfism type II (MOPDII) represents the most common form of primordial dwarfism. MOPD clinical features include severe prenatal and postnatal growth retardation, postnatal severe microcephaly, hypotonia, and an increased risk for cerebrovascular disease and insulin resistance. Autosomal recessive biallelic loss-of-function genomic variants in the centrosomal pericentrin (PCNT) gene on chromosome 21q22 cause MOPDII. Over the past decade, exome sequencing (ES) and massive RNA sequencing have been effectively employed for both the discovery of novel disease genes and to expand the genotypes of well-known diseases. In this paper we report the results both the RNA sequencing and ES of three patients affected by MOPDII with the aim of exploring whether differentially expressed genes and previously uncharacterized gene variants, in addition to pathogenic variants, could be associated with the complex phenotype of this disease. We discovered a downregulation of key factors involved in growth, such as IGF1R, IGF2R, and RAF1, in all three investigated patients. Moreover, ES identified a shortlist of genes associated with deleterious, rare variants in MOPDII patients. Our results suggest that Next Generation Sequencing (NGS) technologies can be successfully applied for the molecular characterization of the complex genotypic background of MOPDII.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418986PMC
http://dx.doi.org/10.3390/ijms241512291DOI Listing

Publication Analysis

Top Keywords

primordial dwarfism
12
osteodysplastic primordial
8
dwarfism type
8
rna sequencing
8
sequencing
5
mopdii
5
whole-exome transcriptome
4
transcriptome sequencing
4
sequencing expands
4
expands genotype
4

Similar Publications

Rationale: Weaver syndrome is a rare congenital overgrowth disorder characterized by a wide spectrum of clinical manifestations that often overlap with other overgrowth syndromes. It is primarily caused by pathogenic variants in the Enhancer of Zeste Homolog 2 (EZH2) gene on chromosome 7q36.1.

View Article and Find Full Text PDF

The mycotoxin, aflatoxin B (AFB), is a potent mutagen that contaminates agricultural food supplies. After ingestion, AFB is oxidized into a reactive electrophile that alkylates DNA, forming bulky lesions such as the genotoxic formamidopyrimidine lesion, AFB-Fapy dG. This lesion is mainly repaired by nucleotide excision repair (NER) in bacteria; however, in humans the picture is less clear.

View Article and Find Full Text PDF

Editing a gibberellin receptor gene improves yield and nitrogen fixation in soybean.

J Integr Plant Biol

September 2025

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Center for Soybean Improvement, National Innovation Platform for Soybean Breeding and Industry-Education Integration, Key Laboratory for Biology and Genetic Improvement o

Soybean is an important source of oil, protein, and feed. However, its yield is far below that of major cereal crops. The green revolution increased the yield of cereal crops partially through high-density planting of lodging-resistant semi-dwarf varieties, but required more nitrogen fertilizers, posing an environmental threat.

View Article and Find Full Text PDF

Nuclease-helicase DNA2 is a multifunctional genome caretaker that is essential for cell proliferation in a range of organisms, from yeast to human. Bi-allelic DNA2 mutations that reduce DNA2 concentrations cause a spectrum of primordial dwarfism disorders, including Seckel and Rothmund-Thomson-related syndromes. By contrast, cancer cells frequently express high concentrations of DNA2 (refs.

View Article and Find Full Text PDF

A CNL protein forms an NLR pair with NRCX to modulate plant immunity.

Stress Biol

September 2025

College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.

Nucleotide-binding leucine-rich repeat (NLR) proteins assemble into genetically linked pairs to mediate effector-triggered immunity (ETI) in plants. Here, we characterize the paired NLRs NRCX and NARY (NRCX adjacent resistance gene Y) in Nicotiana benthamiana. CRISPR/Cas9 knockout of NRCX caused severe dwarfism and constitutively activated immunity, marked by PR1 upregulation and enhanced resistance to Phytophthora capsici.

View Article and Find Full Text PDF