Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Autism Spectrum Disorders (ASD) and schizophrenia are distinct neurodevelopmental disorders that share certain symptoms and genetic components. Both disorders show abnormalities in dendritic spines, which are the main sites of excitatory synaptic inputs. Recent studies have identified the synaptic scaffolding protein Shank3 as a leading candidate gene for both disorders. Mutations in the SHANK3 gene have been linked to both ASD and schizophrenia; however, how patient-derived mutations affect the structural plasticity of dendritic spines during brain development is unknown. Here we use live two photon in vivo imaging to examine dendritic spine structural plasticity in mice with SHANK3 mutations associated with ASD and schizophrenia. We identified shared and distinct phenotypes in dendritic spine morphogenesis and plasticity in the ASD-associated InsG3680 mutant mice and the schizophrenia-associated R1117X mutant mice. No significant changes in dendritic arborization were observed in either mutant, raising the possibility that synaptic dysregulation may be a key contributor to the behavioral defects previously reported in these mice. These findings shed light on how patient-linked mutations in SHANK3 affect dendritic spine dynamics in the developing brain, which provides insight into the synaptic basis for the distinct phenotypes observed in ASD and schizophrenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528879PMC
http://dx.doi.org/10.1016/j.neuroscience.2023.07.024DOI Listing

Publication Analysis

Top Keywords

dendritic spine
16
asd schizophrenia
16
shank3 mutations
8
mutations associated
8
shared distinct
8
changes dendritic
8
spine dynamics
8
dynamics developing
8
dendritic spines
8
mutations shank3
8

Similar Publications

Dysregulated spine morphology is a common feature in the pathology of many neurodevelopmental and neuropsychiatric disorders. Overabundant immature dendritic spines in the hippocampus are causally related to cognitive deficits of Fragile X syndrome (FXS), the most common form of heritable intellectual disability. Recent findings from us and others indicate autophagy plays important roles in synaptic stability and morphology, and autophagy is downregulated in FXS neurons.

View Article and Find Full Text PDF

Examining circadian synaptic plasticity requires housing mice under different lighting conditions (light/dark cycle, LD 12:12, and constant darkness, DD), providing access to running wheels, and sacrificing them at four defined time points within 24 h-at the beginning and middle of the day/subjective day and at the beginning and middle of the night/subjective night. Brains are then properly fixed for transmission electron microscopy (TEM). The barrel cortex, with its precise somatotopic organization, provides an ideal model for such analysis.

View Article and Find Full Text PDF

Two major protein recycling pathways have emerged as key regulators of enduring forms of synaptic plasticity, such as long-term potentiation (LTP), yet how these pathways are recruited during plasticity is unknown. Phosphatidylinositol-3-phosphate (PI(3)P) is a key regulator of endosomal trafficking and alterations in this lipid have been linked to neurodegeneration. Here, using primary hippocampal neurons, we demonstrate dynamic PI(3)P synthesis during chemical induction of LTP (cLTP), which drives coordinate recruitment of the SNX17-Retriever and SNX27-Retromer pathways to endosomes and synaptic sites.

View Article and Find Full Text PDF

Objective: This study aims to investigate the effects of anaesthesia and surgical procedures on the cognitive function of both young and aged mice. It will also explore the role and mechanisms of c-Fos expression in altering hippocampal neuron excitability and its relationship with perioperative neurocognitive disorders in mice.

Methods: In this study, we used a murine laparotomy model to assess cognitive behavioural changes in both young and aged mice at 1, 3, and 7 days post-surgery.

View Article and Find Full Text PDF

Estrogen Alleviates Sevoflurane-Induced Neurotoxicity by Inhibiting ERα-Tau Binding.

Adv Sci (Weinh)

September 2025

Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Institute of Anesthesiology, Tianjin, 300052, China.

Sevoflurane-induced neurotoxicity is age-dependent, but the role of sex differences is unclear. While testosterone has protective effects, the impact of estrogen remains unknown. This study investigates the effects of sevoflurane on neurotoxicity in adult, middle-aged, and aged male and female mice.

View Article and Find Full Text PDF