Microbiota, diet, and the gut-brain axis in multiple sclerosis and stroke.

Eur J Immunol

Charité - Universitaetsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH): Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Berlin, Germany.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intestinal microbiota can influence the phenotype and function of immune cell responses through the dissemination of bacterial antigens or metabolites. Diet is one of the major forces shaping the microbiota composition and metabolism, contributing to host homeostasis and disease susceptibility. Currently, nutrition is a complementary and alternative approach to the management of metabolic and neurological diseases and cancer. However, the knowledge of the exact mechanism of action of diet and microbiota on the gut-brain communication is only developing in recent years. Here, we reviewed the current knowledge on the effect of diet and microbiota on the gut-brain axis in patients with two different central nervous system diseases, multiple sclerosis and stroke. We have also highlighted the open questions in the field that we believe are important to address to gain a deeper understanding of the mechanisms by which diet can directly or indirectly affect the host via the microbiota. We think this will open up new approaches to the treatment, diagnosis, and monitoring of various diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.202250229DOI Listing

Publication Analysis

Top Keywords

gut-brain axis
8
multiple sclerosis
8
sclerosis stroke
8
diet microbiota
8
microbiota gut-brain
8
microbiota
6
microbiota diet
4
diet gut-brain
4
axis multiple
4
stroke intestinal
4

Similar Publications

Gut-derived metabolites are essential for liver fibrogenesis. The aim of this study was to determine the alteration of indole-3-propionic acid (IPA), a crucial tryptophan metabolite, in liver fibrosis and delineate the roles of enterogenic IPA in fibrogenesis. In the present study, metabolomics assays focused on tryptophan metabolism were applied to explore the decreased levels of IPA in the feces and serum of cirrhotic patients, as well as in the feces and portal vein serum of fibrotic mice.

View Article and Find Full Text PDF

Stomach-brain synchronisation is associated with poorer mental health.

Trends Neurosci

September 2025

School of Psychological Science, University of Bristol, Bristol, BS8 1TU, UK. Electronic address:

In common parlance, 'being in touch with your body' is often used positively. However, in a recent study, Banellis, Rebollo, and colleagues show that better stomach-brain synchronisation is actually associated with increased anxiety and depression scores. These findings add an interesting dimension to debates on the role of interoception in mental health.

View Article and Find Full Text PDF

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.

View Article and Find Full Text PDF

Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.

View Article and Find Full Text PDF