Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of safe and high-energy metal anodes represents a crucial research direction. Here, the achievement of highly reversible, dendrite-free transition metal anodes with ultrahigh capacities by regulating aqueous electrolytes is reported. Using nickel (Ni) as a model, theoretical and experimental evidence demonstrating the beneficial role of chloride ions in inhibiting and disrupting the nickel hydroxide passivation layer on the Ni electrode is provided. As a result, Ni anodes with an ultrahigh areal capacity of 1000 mAh cm (volumetric capacity of ≈6000 mAh cm ), and a Coulombic efficiency of 99.4% on a carbon substrate, surpassing the state-of-the-art metal electrodes by approximately two orders of magnitude, are realized. Furthermore, as a proof-of-concept, a series of full cells based on the Ni anode is developed. The designed Ni-MnO full battery exhibits a long lifespan of 2000 cycles, while the Ni-PbO full battery achieves a high areal capacity of 200 mAh cm . The findings of this study are important for enlightening a new arena toward the advancement of dendrite-free Ni-metal anodes with ultrahigh capacities and long cycle life for various energy-storage devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202305368DOI Listing

Publication Analysis

Top Keywords

ultrahigh capacities
12
anodes ultrahigh
12
highly reversible
8
reversible dendrite-free
8
metal anodes
8
areal capacity
8
full battery
8
anions regulation
4
regulation engineering
4
engineering enables
4

Similar Publications

High-entropy metal phosphide nanoparticles for accelerated lithium polysulfide conversion.

Chem Sci

September 2025

School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University Nanning 530004 P. R. China

To overcome the persistent challenges of sluggish lithium polysulfide (LiPS) conversion kinetics and the shuttle effect in Li-S batteries, this work introduces a novel, cost-effective thermal treatment strategy for synthesizing high-entropy metal phosphide catalysts using cation-bonded phosphate resins. For the first time, we successfully fabricated single-phase high-entropy FeCoNiCuMnP nanoparticles anchored on a porous carbon network (HEP/C). HEP/C demonstrates enhanced electronic conductivity and superior LiPS adsorption capability, substantially accelerating its redox kinetics.

View Article and Find Full Text PDF

S-LaMoO solid solution: a sulfur cathode with a non-shaped matrix enables a better lithium-sulfur battery.

Mater Horiz

September 2025

Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.

A prefabricated matrix is normally used as the cathode host for lithium-sulfur batteries to address the shuttle effect problem. Unconventionally, herein we present a non-shaped matrix for a sulfur cathode that enables a better lithium-sulfur battery. The fast oxide-ion conductor LaMoO is introduced into the sulfur cathodes for the first time.

View Article and Find Full Text PDF

Biphenylite with an Ultrahigh Capacity of Hexafluorophosphate Anions as a Promising Electrode Material in Dual-Ion Batteries.

ACS Appl Mater Interfaces

September 2025

Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China.

Dual-ion batteries (such as alkali metal ion-hexafluorophosphate anion systems) have demonstrated an excellent performance; however, identifying suitable cathode materials with superior electrochemical properties remains a major challenge impeding their advancement. In this work, the feasibility of biphenylite as a dual-ion battery cathode material is investigated systematically by first-principles calculations. The calculated result indicates that biphenylite has an ultrahigh cathode specific capacity for PF anions (107.

View Article and Find Full Text PDF

Anchoring Ligand Electron Enables Robust Metal-Oxygen Coordination Toward 4.5 V O3-Type Sodium-Ion Battery Cathodes.

Angew Chem Int Ed Engl

September 2025

College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.

High-voltage operation enables sodium-sufficient O3-type layered oxides to approach the maximum achievable energy densities for practical sodium-ion batteries (SIBs). This high-voltage regime, however, induces structural degradation strongly correlated with oxygen redox activity, a mechanism still incompletely resolved. Using prototypical O3-type NaNiFeMnO (NFM) as a model system, we identify the origin of this instability as a detrimental feedback loop between σ-type oxygen redox and cation migration.

View Article and Find Full Text PDF

Gbits/s-Level Encrypted Spectral Wireless Communication Enabled by High-Performance Flexible Organic Hyperspectrometer.

Adv Mater

September 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.

The exponential growth of data in the information era has pushed conventional optical communication technology to its limitations, including inefficient spectral utilization, slow data rate, and inherent security vulnerabilities. Here, a transformative high-speed organic spectral wireless communication (SWC) technology enabled by a flexible, miniaturized, and high-performance organic hyperspectrometer is proposed that integrates ultrahigh-speed data transmission with hardware-level encryption. By synergistically combining organic photodetector arrays with tunable responsivities and spectral-tunable organic filters, the organic hyperspectrometer achieves a broad spectral detection range of 400 to 900 nm, resolution of 1.

View Article and Find Full Text PDF