Methods for Characterizing Intercalation in Aqueous Zinc Ion Battery Cathodes: A Review.

Adv Sci (Weinh)

Department of Materials Science and Engineering, National University of Singapore. Block E3A #03-14, 7 Engineering Drive 1, Singapore, 117574, Singapore.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aqueous zinc ion batteries have gained research attention as a safer, economical and more environmentally friendly alternative to lithium-ion batteries. Similar to lithium batteries, intercalation processes play an important role in the charge storage behaviour of aqueous zinc ion batteries, with the pre-intercalation of guest species in the cathode being also employed as a strategy to improve battery performance. In view of this, proving hypothesized mechanisms of intercalation, as well as rigorously characterizing intercalation processes in aqueous zinc ion batteries is crucial to achieve advances in battery performance. This review aims to evaluate the range of techniques commonly used to characterize intercalation in aqueous zinc ion battery cathodes, providing a perspective on the approaches that can be utilized to rigorously understand such intercalation processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502642PMC
http://dx.doi.org/10.1002/advs.202303211DOI Listing

Publication Analysis

Top Keywords

aqueous zinc
20
zinc ion
20
ion batteries
12
intercalation processes
12
characterizing intercalation
8
intercalation aqueous
8
ion battery
8
battery cathodes
8
battery performance
8
intercalation
6

Similar Publications

Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn-Br Microbatteries.

J Phys Chem Lett

September 2025

College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China.

Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn-Br microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc.

View Article and Find Full Text PDF

Herein, 1,3,5-benzenetricarboxylate (BTC) intercalation and oxygen vacancy engineering are proposed to enhance the electrochemical performance of layered double hydroxide (LDH) nanosheets. The optimized LDH exhibits a remarkable capacity of 426 mAh g at 3 A g and 70% capacity retention after 15 000 cycles, attributed to improved ion transport, abundant active sites, and structural stability.

View Article and Find Full Text PDF

Alkaline zinc-iron flow batteries (AZIFBs) are one of the promising aqueous redox chemistries for large-scale energy storage due to their intrinsic safety and low cost. However, the energy efficiency (EE) and power density of batteries with low-cost polybenzimidazole (PBI) membranes are still limited due to the relatively poor ionic conductivity of PBI in an alkaline medium. Here, this study proposes a novel chemical approach for regulating the chemical environment of the PBI membrane.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) represent an environmentally benign energy storage alternative. However, the VO cathode suffers from limited cycling stability and rate capability due to structural instability, vanadium dissolution, and high desolvation energy caused by the large size of [Zn(HO)] deintercalation. Address these issues, we introduce a VO/VOPO (VOP) heterostructure that that reinforces the crystal structure to suppress vanadium dissolution and establishes a hydrophilic interface reducing the desolvation energy of Zn.

View Article and Find Full Text PDF

Modulating the electronic structure of catalysts to maximize their power holds the key to address the challenges faced by zinc-iodine batteries (ZIBs), including the shuttle effect and slow redox kinetics at the iodine cathode. Herein, oxygen vacancies is innovatively introduced into CoO lattice to create high-spin-state Co active sites in nonstoichiometric CoO nanocrystals supported by carbon nanofibers (H-CoO/CNFs). This simple strategy intensifies crystal field splitting of Co 3d orbitals, optimizing the spin-orbital coupling between Co 3d orbitals and iodine species.

View Article and Find Full Text PDF