Reaction performance prediction with an extrapolative and interpretable graph model based on chemical knowledge.

Nat Commun

Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate prediction of reactivity and selectivity provides the desired guideline for synthetic development. Due to the high-dimensional relationship between molecular structure and synthetic function, it is challenging to achieve the predictive modelling of synthetic transformation with the required extrapolative ability and chemical interpretability. To meet the gap between the rich domain knowledge of chemistry and the advanced molecular graph model, herein we report a knowledge-based graph model that embeds the digitalized steric and electronic information. In addition, a molecular interaction module is developed to enable the learning of the synergistic influence of reaction components. In this study, we demonstrate that this knowledge-based graph model achieves excellent predictions of reaction yield and stereoselectivity, whose extrapolative ability is corroborated by additional scaffold-based data splittings and experimental verifications with new catalysts. Because of the embedding of local environment, the model allows the atomic level of interpretation of the steric and electronic influence on the overall synthetic performance, which serves as a useful guide for the molecular engineering towards the target synthetic function. This model offers an extrapolative and interpretable approach for reaction performance prediction, pointing out the importance of chemical knowledge-constrained reaction modelling for synthetic purpose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272164PMC
http://dx.doi.org/10.1038/s41467-023-39283-xDOI Listing

Publication Analysis

Top Keywords

graph model
16
reaction performance
8
performance prediction
8
extrapolative interpretable
8
synthetic function
8
modelling synthetic
8
extrapolative ability
8
knowledge-based graph
8
steric electronic
8
model
6

Similar Publications

Designing Buchwald-Hartwig Reaction Graph for Yield Prediction.

J Org Chem

September 2025

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.

The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.

View Article and Find Full Text PDF

Objective: To analyze the hotspots and frontiers in the field of subarachnoid hemorrhage using the bibliometrics method and providing references for academic research.

Methods: All published studies related to subarachnoid hemorrhage published in the Web of Science core database from 1 January 2016 to 25 September 2021 were retrospectively identified using VOSviewer and CiteSpace software. Visualization VOSviewer and CiteSpace software were used to perform statistical and cluster analyses on authors, countries, institutions, keywords, and co-cited documents.

View Article and Find Full Text PDF

The present study aimed to investigate the relationship between screen time and the frequency of consumption of ultra-processed foods (UPF) in overweight pregnant women. This was a cross-sectional study that used baseline data from a randomized clinical trial conducted in the Primary Health Care (PHC) network of a Brazilian municipality between 2018 and 2021. Data from the Food Consumption Markers form were used.

View Article and Find Full Text PDF

Objectives: to develop a mobile application prototype using Artificial Intelligence (AI) to predict and support the diagnosis of pulmonary tuberculosis in children - TB Kids.

Methods: technological development research of the prototyping type, based on the Rational Unified Process model and its four stages: conception, elaboration, construction and transition. The development of the TB Kids prototype took place from November 2022 to July 2023.

View Article and Find Full Text PDF

The integration of multimodal single-cell omics data is a state-of-art strategy for deciphering cellular heterogeneity and gene regulatory mechanisms. Recent advances in single-cell technologies have enabled the comprehensive characterization of cellular states and their interactions. However, integrating these high-dimensional and heterogeneous datasets poses significant computational challenges, including batch effects, sparsity, and modality alignment.

View Article and Find Full Text PDF