98%
921
2 minutes
20
Nitric oxide (NO) is a ubiquitous, gaseous, free radical signaling molecule which plays a key role in physiological and pathological processes. Literature reports revealed that the conventional methods such as colorimetry, electron paramagnetic resonance (EPR), electrochemical etc. to detect NO are costly, time consuming and lack resolution, particularly in aqueous or biological system. Thus, in this context, herein we have developed covalently linked biomass derived carbon quantum dots (CQDs) and naphthalimide based nano sensor system for FRET based ratiometric detection of nitric oxide (NO) in pure aqueous media. The CQDs derived from orange peels were characterized using UV-visible absorption, fluorescence spectroscopy, PXRD, TEM, FT-IR and zeta potential studies. Further, the obtained CQDs were functionalized with amine functionality, and subsequently linked with naphthalimide derivative (5) using terephthaldehyde through covalent bond formation. The conjugation of naphthalimide (5) and functionalized CQDs was studied using DLS, zeta potential, FT-IR and time resolved fluorescence spectroscopy. The excitation of developed nano sensor system at λ 360 nm results in fluorescence emission at λ 530 nm which establishes the FRET pair between the CQDs and naphthalimide unit. However, in the presence of NO, the observed FRET pair abolishes due to the cleavage of NO susceptible imine bond. The developed sensor demonstrates high selectivity towards NO with limit of detection (LOD) and limit of quantification (LOQ) of 15 nM and 50 nM respectively. Further, the developed sensor system was also utilized for indirect detection of nitrite (NO) in food samples for food safety and monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.341444 | DOI Listing |
J Colloid Interface Sci
September 2025
Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China. Electronic address:
Ionic conductive hydrogels show promise for flexible sensors in wearables and e-skins, but balancing mechanical strength with high conductivity remains challenging. Herein, a triple-network ionic conductive hydrogel based on poly(acrylic acid) (PAA) was developed, synergistically reinforced by dissolved cellulose (dCel) and aramid nanofibers (ANF), with Al/Zn bimetallic ions serving as the conductive medium. Intriguingly, dCel was in-situ generated using the concentrated Al/Zn bimetallic salt solutions as the cellulose solvent, following the complete dissolution of the pulp fibers driven by the intensive ionic hydration of Al/Zn ions.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Zürich, Department of Physics, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
We present the first results from the Quantum Resolution-Optimized Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE). The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption, and is sensitive to energy deposits as low as 0.11 eV.
View Article and Find Full Text PDFACS Nano
September 2025
International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China.
Mimicking human brain functionalities with neuromorphic devices represents a pivotal breakthrough in developing bioinspired electronic systems. The human somatosensory system provides critical environmental information and facilitates responses to harmful stimuli, endowing us with good adaptive capabilities. However, current sensing technologies often struggle with insufficient sensitivity, dynamic response, and integration challenges.
View Article and Find Full Text PDFNano Lett
September 2025
School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China.
Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2025
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China. Electronic address:
To achieve ultrasensitive and real-time detection of the H1N1 influenza virus, this study designed a nucleic acid-free fluorescent biosensor based on 3D spherical DNA nanostructure and CRISPR/Cas12a (3D-SDNC). The biosensor constructs a rigid 3D nano-framework via self-assembly of six oligonucleotide chains, with H1N1-specific nucleic acid aptamers and Cas12a activator strands strategically positioned at multi-spined vertices for precise spatial coupling between viral recognition and signal transduction. Upon aptamer-virus binding, the induced conformational change liberates the activator strand, thereby activating the trans-cleavage activity of the Cas12a/crRNA complex to efficiently cleave the HEX/BHQ1 double-labeled fluorescent probe and initiate cascade signal amplification.
View Article and Find Full Text PDF