98%
921
2 minutes
20
Although the electrochemiluminescence (ECL) of metal nanoclusters has been reported, revealing the correlation between structure and ECL at an atomic level is highly challenging. Here, we reported the impact of the metal core of Au(SAdm)(CHT) (Au-AC for short; SAdm = 1-adamantanethiolate; CHT= cyclohexanethiol) and its isomer Au(TBBT) (TBBT = 4-tert-butylthiophenol) on their solution-state and solid-state electrochemiluminescence. In self-annihilation ECL experiments, Au-AC showed a strong cathodic ECL but a weak anodic ECL, while the ECL signal of Au(TBBT) was weak and barely detectable. Density functional theory (DFT) calculations showed that the Au kernel of [Au-AC] is metastable, weakening its anodic ECL. Au-AC in solution-state displayed an intense co-reactant ECL in the near-infrared region, which is 7 times higher than that of standard Ru(bpy). The strongest solid-state ECL emissions of Au-AC and Au(TBBT) were at 860 and 770 nm, respectively - 15 nm red-shifted for Au-AC and 20 nm blue-shifted for Au(TBBT), compared to their corresponding solid-state photoluminescence (PL) emissions. This work shows that ECL is significantly affected by the subtle differences of the metal core, and offers a potential basis for sensing and immunoassay platforms based on atomically precise emissive metal nanoclusters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232509 | PMC |
http://dx.doi.org/10.1038/s42004-023-00907-4 | DOI Listing |
ACS Nano
September 2025
School of Microelectronics, Hefei University of Technology, Hefei 230009, China.
Near-infrared (NIR) narrowband photodetectors, featuring high sensitivity, excellent wavelength selectivity, and narrow full width at half-maximum (fwhm), enable efficient detection of specific NIR wavelengths and are widely used in optical communication, environmental monitoring, spectroscopy, and scientific research. In this study, we present a self-powered NIR photodetector based on a silicon nanowire (SiNW) array, exhibiting an ultranarrowband response centered at 1120 nm. The device employs a simple Schottky junction architecture.
View Article and Find Full Text PDFFungal Biol
October 2025
Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Envir
Cadmium (Cd) contamination in edible fungi poses a significant threat to food safety. However, targeted strategies to regulate Cd uptake and enhance Cd stress tolerance in Morchella sextelata remain largely unexplored. Given that M.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Lithium‑sulfur batteries (LSBs) are promising alternatives to lithium-ion batteries due to their high energy density and low cost. However, issues like the lithium polysulfide (LiPSs) shuttle effect, lithium dendrite growth, and flammable electrolytes hinder commercialization. In this study, we have developed a metal-based catalyst, bismuth oxychloride (BiOCl) nanoflowers coated with conductive polypyrrole (Bi@Ppy), via hydrothermal synthesis.
View Article and Find Full Text PDFSci Total Environ
September 2025
Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; KNU NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea; Microblance Inc., Daegu 41566, Republic of Korea. Electronic address:
Abandoned mines have created extensive idle areas contaminated with heavy metals (HMs). Conventional remediation methods are often costly, environmentally disruptive, and pose risks to human health. As a sustainable alternative, a biological approach utilizing metal-tolerant plant growth-promoting bacteria (mPGPBs) was employed to remediate HM-contaminated soils and assess their biological safety.
View Article and Find Full Text PDFWater Res
September 2025
State Key Laboratory of Soil Pollution Control and Safety, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China. Electronic address:
Accelerating the rate-limiting surface Fe(III)/Fe(II) redox cycling is pivotal for efficient iron-mediated Fenton-like decontamination, yet conventional reductants (e.g., toxic hydroxylamine, thiosulfate) suffer from secondary toxicity, self-quenching, and heavy metal leaching.
View Article and Find Full Text PDF