98%
921
2 minutes
20
The statistical terpolymerization of epoxides, CO and cyclic anhydrides remains challenging, mainly because epoxide/CO and epoxide/anhydride copolymerizations typically proceed at considerably different rates. Herein, we report the syntheses of novel chiral terpolymers with unprecedented statistical distributions of carbonate and ester units (up to 50 % junction units) via the one-pot reaction of cyclohexene oxide, phthalic anhydride, and CO under mild conditions using enantiopure bimetallic aluminum-complex-based catalyst systems. Notably, all resulting terpolymers exhibited excellent enantioselectivities (≥96 % ee) that were independent of the carbonate-ester distribution. The statistical compositions of the carbonate and ester units in the resulting terpolymers were determined via H and C NMR spectroscopies. Furthermore, thermal properties were tuned by altering the ester content of the chiral terpolymer without influencing the enantioselective ring-opening step involving the meso-epoxide. This asymmetric terpolymerization methodology is also compatible with a variety of meso-epoxides to afford the corresponding terpolymers with 17 %-25 % junction units and excellent enantioselectivities (94 %-99 % ee). The present study is expected to provide new guidelines for preparing a broad range of biodegradable polymers with excellent enantioselectivities and adjustable properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202304943 | DOI Listing |
J Org Chem
September 2025
Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. of China.
A Mg(OTf)-catalyzed asymmetric Michael addition/cyclization cascade reaction between 3-isothiocyanato oxindoles and 2-arylidene-1,3-indanediones has been developed. This transformation provides an efficient and concise approach to biologically important bispiro[indanedione-oxindole-pyrrolidinyl]s under mild conditions in good to excellent yields (70-99% yields) with moderate to good stereoselectivities (up to 99% and >95:5 d.r.
View Article and Find Full Text PDFOrg Lett
September 2025
State Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.
A novel palladium-catalyzed asymmetric aminomethylative pyridonation of conjugated dienes with -acetals and 2-hydroxypyridines was established, which provided a direct and reliable method for the synthesis of a wide range of γ-aminated N-substituted 2-pyridones with good to excellent enantioselectivities. The simple BF was identified as an effective cocatalyst to improve the reaction efficiency, and DFT calculations revealed that proton transfer between the aminomethylated allylic palladium species and 2-hydroxypyridine promoted by BF is crucial for obtaining good reactivity.
View Article and Find Full Text PDFOrg Lett
September 2025
School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
Current research on artificial aldolases predominantly centers on aldehyde substrates with relatively limited exploration of ketone substrates. Here, we report the creation of a novel artificial aldolase based on apo-myoglobin by embedding an organocatalytic secondary amine cofactor in the protein's distal pocket. The designer enzyme exhibits good to excellent enantioselectivities (up to 97.
View Article and Find Full Text PDFOrg Lett
September 2025
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610093, P. R. China.
The first enantioselective Bora-Brook rearrangement reaction catalyzed by a Cu/SOP system was established. In this protocol, the synthesis of axially chiral monoaldehydes has been achieved by the desymmetric reduction of prochiral dialdehydes. This reaction proceeds smoothly under mild conditions, affording the products in high yields (up to 91%) with excellent enantioselectivities (up to 96:4 er) while exhibiting broad functional group compatibility.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
A regio-, diastereo-, and enantioselective cobalt-catalyzed C-H activation/annulation of aromatic and alkenyl amides has been developed to access heterocycles featuring vicinal C-C and C-N diaxes. This strategy uniquely harnesses previously unexplored electronically unbiased internal alkynes and proceeds under mild conditions to deliver products in high yields with excellent regio- and stereocontrol.
View Article and Find Full Text PDF