98%
921
2 minutes
20
Increasing studies have been conducted to explore strategies for enhancing the catalytic performance of metal-doped C-N-based materials (e.g., cobalt (Co)-doped CN) via heteroatomic doping. However, such materials have been rarely doped by phosphorus (P) with the higher electronegativity and coordination capacity. In current study, a novel P and Co co-doped CN (Co-xP-CN) was developed for peroxymonosulfate (PMS) activation and 2,4,4'-trichlorobiphenyl (PCB28) degradation. The PCB28 degradation rate increased by 8.16-19.16 times with Co-xP-CN compared to conventional activators under similar reaction conditions (e.g., PMS concentration). The state-of-the-art techniques, including X-ray absorption spectroscopy and electron paramagnetic resonance etc., were applied to explore the mechanism of P doping for enhancing Co-xP-CN activation. Results showed that P doping induced the formation of Co-P and Co-N-P species, which increased the contents of coordinated Co and improved Co-xP-CN catalytic performance. The Co mainly coordinated with the first shell layer of Co-N, with successful P doping occurring in the second shell layer of Co-N. The P doping favored electron transfer from the C to N atom near Co sites and thus strengthened PMS activation owing to its higher electronegativity. These findings provide new strategy for enhancing the performance of single atom-based catalysts for oxidant activation and environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.131480 | DOI Listing |
ACS Catal
August 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
Chlorinated hydrocarbons are widely used as solvents and synthetic intermediates, but their chemical persistence can cause hazardous environmental accumulation. Haloalkane dehalogenase from (DhlA) is a bacterial enzyme that naturally converts toxic chloroalkanes into less harmful alcohols. Using a multiscale approach based on the empirical valence bond method, we investigate the catalytic mechanism of 1,2-dichloroethane dehalogenation within DhlA and its mutants.
View Article and Find Full Text PDFEco Environ Health
September 2025
Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China.
Waterborne viruses have caused outbreaks of related diseases and threaten human health, and advanced oxidation processes (AOPs), as clean and efficient technologies, have received widespread attention for their excellent performance in inactivating viruses. However, heterogeneity in susceptibility of structurally distinct viruses to various reactive oxygen species (ROS) is unclear. This study first measured the heterogeneity in inactivation kinetics and biological mechanisms of four typical viral surrogates (MS2, phi6, phix174, and T4) to various ROS by visible light catalysis.
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Bipolar membranes (BPMs) are increasingly recognized as a promising electrolyte option for water electrolysis, attributable to their distinctive properties derived from the membrane's layered structure, which consists of an anion exchange (AEL) and a cation exchange layer (CEL). This study investigates four different BPMs and the influence they have on the performance of a water electrolysis cell under two different feed configurations: (1) a symmetric deionized water feed to both anode and cathode compartments and (2) an asymmetric feed with a 0.5 mol/L NaCl catholyte feed and a deionized water anolyte feed.
View Article and Find Full Text PDFChem Sci
September 2025
School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University Nanning 530004 P. R. China
To overcome the persistent challenges of sluggish lithium polysulfide (LiPS) conversion kinetics and the shuttle effect in Li-S batteries, this work introduces a novel, cost-effective thermal treatment strategy for synthesizing high-entropy metal phosphide catalysts using cation-bonded phosphate resins. For the first time, we successfully fabricated single-phase high-entropy FeCoNiCuMnP nanoparticles anchored on a porous carbon network (HEP/C). HEP/C demonstrates enhanced electronic conductivity and superior LiPS adsorption capability, substantially accelerating its redox kinetics.
View Article and Find Full Text PDFChemSusChem
September 2025
Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany.
The palladium-catalyzed Suzuki-Miyaura cross coupling reaction to forge carbon-carbon bonds fundamentally changes the practice of organic synthesis. Herein an isolated palladium catalyst supported on polymeric carbon nitride (Pd/PCN) for efficient cross coupling of bromobenzene and phenylboronic acid at room temperature is reported. It is demonstrated that the Pd/PCN catalyst with a 2 wt% Pd loading achieves the highest mole-specific activity.
View Article and Find Full Text PDF