The DELLA-ABI4-HY5 module integrates light and gibberellin signals to regulate hypocotyl elongation.

Plant Commun

State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China. Electronic address:

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant growth is coordinately controlled by various environmental and hormonal signals, of which light and gibberellin (GA) signals are two critical factors with opposite effects on hypocotyl elongation. Although interactions between the light and GA signaling pathways have been studied extensively, the detailed regulatory mechanism of their direct crosstalk in hypocotyl elongation remains to be fully clarified. Previously, we reported that ABA INSENSITIVE 4 (ABI4) controls hypocotyl elongation through its regulation of cell-elongation-related genes, but whether it is also involved in GA signaling to promote hypocotyl elongation is unknown. In this study, we show that promotion of hypocotyl elongation by GA is dependent on ABI4 activation. DELLAs interact directly with ABI4 and inhibit its DNA-binding activity. In turn, ABI4 combined with ELONGATED HYPOCOTYL 5 (HY5), a key positive factor in light signaling, feedback regulates the expression of the GA2ox GA catabolism genes and thus modulates GA levels. Taken together, our results suggest that the DELLA-ABI4-HY5 module may serve as a molecular link that integrates GA and light signals to control hypocotyl elongation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504559PMC
http://dx.doi.org/10.1016/j.xplc.2023.100597DOI Listing

Publication Analysis

Top Keywords

hypocotyl elongation
28
della-abi4-hy5 module
8
integrates light
8
light gibberellin
8
gibberellin signals
8
hypocotyl
8
light signaling
8
elongation
7
light
5
module integrates
4

Similar Publications

CALCIUM-DEPENDENT PROTEIN KINASES (CDPKs/CPKs) are central components in plant signaling networks, orchestrating growth, development, and stress responses. However, their functions in thermomorphogenesis-an essential thermal-adaptation response-particularly their coordination with the core transcription factors PHYTOCHROME-INTERACTING FACTORs 4 and 7 (PIF4 and PIF7), remains elusive. Here we show that AtCPK4/5/6/11/12 physically interact with PIF4 and PIF7.

View Article and Find Full Text PDF

Plants are constantly exposed to environmental changes and must respond carefully to ensure survival and growth. Under high temperatures, many plants exhibit a series of morphological and developmental adjustments, including increased hypocotyl and petiole elongation. These adaptations, collectively termed thermomorphogenesis, promote transpiration and water loss, thereby enhancing evaporative cooling.

View Article and Find Full Text PDF

Salicylic acid (SA), a long-characterized defense hormone, is increasingly recognized for its roles in plant growth and development. However, its involvement in mediating plant growth responses to environmental cues remains less understood. Here, we show that SA negatively affects thermomorphogenic growth in Arabidopsis thaliana.

View Article and Find Full Text PDF

PHYTOCHROME INTERACTING FACTOR4 (PIF4) plays an important role in regulating plant thermomorphogenesis. In this study, two PIF4 homologous genes, BcPIF4-1 and BcPIF4-2 (Brassica rapa subsp. CHINENSIS PIF4-1 and PIF4-2), were investigated.

View Article and Find Full Text PDF

This study focused on the chemical synthesis of auxin analogs, wherein a trifluoromethyl group was introduced near the carboxyl group in the side chain of natural and synthetic auxins, including IAA, NAA, IBA, 2,4-D, and 4-Cl-IAA. The effects of these synthetic compounds and natural auxins on plant growth regulation and callus growth were evaluated. In experiments with black gram, CF-IAA and 4-Cl-CF-IAA exhibited comparable effects to the parent compound, IAA.

View Article and Find Full Text PDF