98%
921
2 minutes
20
As the offshore hydrocarbon industry matures and decommissioning activities are expected to increase, there is a requirement to assess the environmental consequences of different pipeline decommissioning options. Previous research on fish and other ecological components associated with pipelines has focused on examining species richness, abundance and biomass surrounding structures. The extent to which subsea pipelines mimic or alter ecosystem function compared with nearby natural habitats is unknown. We analyse differences in fish assemblage biological trait composition and the functional diversity at exposed shallow-water subsea pipelines, nearby natural reef and soft sediment habitats, using mini stereo-video remotely operated vehicles (ROV). Habitats significantly differed in assemblage trait composition. The pipeline and reef habitats shared a more similar functional composition and had the presence of key functional groups required for the development and maintenance of healthy coral reef systems. The reef habitat had the greatest functional diversity, followed by the pipeline habitat and soft sediment habitat respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2023.105931 | DOI Listing |
Clin Genet
September 2025
Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
LONP1 encodes a mitochondrial protease essential for protein quality control and metabolism. Variants in LONP1 are associated with a diverse and expanding spectrum of disorders, including Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies syndrome (CODAS), congenital diaphragmatic hernia (CDH), and neurodevelopmental disorders (NDD), with some individuals exhibiting features of mitochondrial encephalopathy. We report 16 novel LONP1 variants identified in 16 individuals (11 with NDD, 5 with CDH), further expanding the clinical spectrum.
View Article and Find Full Text PDFNat Aging
September 2025
State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
Membraneless organelles assembled by liquid-liquid phase separation interact with diverse membranous organelles to regulate distinct cellular processes. It remains unknown how membraneless organelles are engaged in mitochondrial homeostasis. Here we demonstrate that mitochondria-associated translation organelles (MATOs) mediate local synthesis of proteins required for structural and functional maintenance of mitochondria.
View Article and Find Full Text PDFNature
September 2025
Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
Bacteriophages are the most abundant entities on earth and exhibit vast genetic and phenotypic diversity. Exploitation of this largely unexplored molecular space requires identification and functional characterization of genes that act at the phage-host interface. So far, this has been restricted to few model phage-host systems that are amenable to genetic manipulation.
View Article and Find Full Text PDFNat Commun
September 2025
Life-Like Materials and Systems, University of Mainz, Mainz, Germany.
Nuclear biomolecular condensates are essential sub-compartments within the cell nucleus and play key roles in transcription and RNA processing. Bottom-up construction of nuclear architectures in synthetic settings is non-trivial but vital for understanding the mechanisms of condensates in real cellular systems. Here, we present a facile and versatile synthetic DNA protonucleus (PN) platform that facilitates localized transcription of branched RNA motifs with kissing loops (KLs) for subsequent condensation into complex condensate architectures.
View Article and Find Full Text PDFJ Anat
September 2025
Cátedra de Biología General, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina.
The knee joint plays a critical role in tetrapod locomotion, yet its developmental trajectories and anatomical diversity remain underexplored outside of model taxa. Here, we examine knee joint development in three representative reptilian lineages, Phrynops hilarii (Testudines), Caiman latirostris (Crocodylia), and Columba livia (Aves), and compare them with adult knee morphology in two squamate species, Cercosaura parkerii and Hemidactylus mabouia. Using histological series spanning key developmental stages, we document patterns of ossification, meniscus formation, cartilage composition, and sesamoid presence.
View Article and Find Full Text PDF