Enhanced degradation of extracellular polymeric substances by yeast in activated sludge to achieve sludge reduction.

Bioresour Technol

School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China. Electronic address:

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Candida Tropicalis was used to improve the dewaterability of activated sludge (AS) and reduce its biomass by degrading EPS in AS. The protein, polysaccharide, and hydrophilic amino acids in EPS decreased by 54.50, 29.20, and 61.01%, respectively. Meanwhile, molecular weight distribution indicated that yeast degraded macromolecular organics into small molecular ones. The direct addition of yeast to AS was more conducive to EPS degradation. With the addition of 0.75 g/L of wet yeast cells and 24 h of aeration enhanced the dewaterability of AS. The CST and MLSS decreased by 24.44 and 10.51%, respectively. After 30 days of operation of lab-scale continuous SBRs, the CST and MLSS of AS were reduced by 6.37 ± 2.01 and 3.57 ± 0.52%, respectively. FTIR spectroscopy results showed that some hydrophilic functional groups were reduced. This study provides a new approach for the in-situ reduction of AS in wastewater treatment plant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.128915DOI Listing

Publication Analysis

Top Keywords

activated sludge
8
cst mlss
8
enhanced degradation
4
degradation extracellular
4
extracellular polymeric
4
polymeric substances
4
yeast
4
substances yeast
4
yeast activated
4
sludge achieve
4

Similar Publications

Odor problems in treated municipal wastewater are a concern, yet the sources and formation dynamics of these compounds within sewerage systems remain unclear. 2,4,6-trichloroanisole (2,4,6-TCA) is a key odorant in the effluents of municipal wastewater treatment plants (WWTPs). This study investigates the formation of 2,4,6-TCA through the conversion of its precursor, 2,4,6-trichlorophenol (2,4,6-TCP).

View Article and Find Full Text PDF

Novel Enterococcus phage BUCT630: Isolation and genomic insights targeting drug-resistant Enterococcus faecium in vitro and in vivo.

Microb Pathog

September 2025

College of Life Sciences and Technology, Beijing University of Chemical Technology, Beijing 100029 China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:

The antibiotic-resistant Enterococcus faecium (E. faecium) is a significant health issue requiring alternative therapies. Phages could be an alternative to antibiotics and have promising activity in both in vitro and in vivo experiments.

View Article and Find Full Text PDF

Free radical switching behavior between initial neutral and buffer neutral condition during Fenton-like degradation over pyrite/hematite mineral.

Environ Res

September 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:

Heterogeneous Fenton-like reactions have broadened the pH adaptation window of traditional homogeneous Fenton during water purification. However, the sharp decrease in their activity under macro-neutral conditions is still a large challenge. More importantly, although it has been realized that the pH value always changes during the heterogeneous Fenton-like process, there are still a few research focuses on the degradation mechanisms in different pH systems, especially the difference between initial neutral and the buffered neutral system.

View Article and Find Full Text PDF

Mechanistic Insights into Recovery of Partial Denitrification/Anammox under Continuous Flow: Balancing Nitrite Supply and Microbial Competition.

Environ Res

September 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.

Partial denitrification coupled with anammox (PD/A) has emerged as a promising low-carbon strategy for energy-efficient nitrogen removal from municipal wastewater. However, the reactivation of PD/A systems following operational disturbances remains challenging, particularly under continuous-flow conditions, where microbial interactions and process stability are more complex than in sequencing batch reactors. This study systematically and first evaluated the recovery dynamics of a continuous-flow PD/A process seeded with low-activity granular sludge stored at 4 °C for three months.

View Article and Find Full Text PDF

The recovery of lactic acid (LA) from the co-fermentation of food waste and waste activated sludge is shifting from feasibility studies to process optimization and predictive modeling. This study extends the widely used International Water Association Anaerobic Digestion Model No.1 (ADM1) by incorporating lactic acid bacteria-mediated pathways and adjusted stoichiometry to simulate LA generation from sugars, implemented in the GPS-X simulation platform.

View Article and Find Full Text PDF