Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ovine brucellosis is a global zoonotic disease of sheep caused by Brucella melitensis, which inflicts a significant burden on human and animal health. Brucella suis strain S2 (B. suis S2) is a smooth live attenuated vaccine for the prevention of ovine brucellosis in China. However, no previous studies have assessed the immunogenicity of B. suis S2 vaccine after oral immunization in sheep. Here, we attempted to evaluate the ovine immune response over the course of B. suis S2 immunization and to identify in vivo predictors for vaccine development. Body temperature, serum Brucella antibodies, serum cytokines (IL-12p70 and interferon [IFN]-γ), and bacterial load in the mandibular lymph nodes (LN), superficial cervical LN, superficial inguinal LN, and spleen were investigated to determine the safety and efficacy of the vaccine. The abnormal body temperature of sheep occurred within 8 days post-infection (dpi). Brucella suis S2 persisted for a short time (< 21 dpi) in the mandibular LN. The highest level of IL-12p70 was observed at 9 dpi, whereas serum IFN-γ levels peaked at 12 dpi. Transcriptome analysis and quantitative reverse transcription PCR were performed to determine gene expression profiles in the mandibular LN of sheep. Antigen processing and presentation pathway was the dominant pathway related to the dataset. Our studies suggest that the immune response in ovine LN resembled type 1 immunity with the secretion of IL-12p70 and IFN-γ after B.suis S2 immunization and the vaccine may eliminate Brucella via stimulation of M1 macrophages through the course of Th cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013293PMC
http://dx.doi.org/10.1186/s13567-023-01147-zDOI Listing

Publication Analysis

Top Keywords

brucella suis
12
lymph nodes
8
suis vaccine
8
ovine brucellosis
8
body temperature
8
suis
6
brucella
5
vaccine
5
clearance bacteria
4
bacteria lymph
4

Similar Publications

First isolation and identification of in sheep and goats: new insights and implications for veterinary medicine.

Front Microbiol

August 2025

Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France.

Many species from the genus are causative agents of the bacterial zoonosis brucellosis. Until recently, it was generally believed that these bacteria exhibit strict host specificity; however, recent findings suggest otherwise. is an atypical species, no threat to humans, with a broad host spectrum, primarily found in wildlife and rodents, and is the only species isolated from soil, aquatic environments, and frogs, suggesting its environmental persistence and adaptability to diverse ecological niches.

View Article and Find Full Text PDF

Accurately assembling nanopore sequencing data of highly pathogenic bacteria.

BMC Genomics

August 2025

Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Naumburger Str. 96a, 07743, Jena, Germany.

Background: Bacterial genome exploration and outbreak analysis rely heavily on robust whole-genome sequencing and bioinformatics analysis. Widely-used genomic methods, such as genotyping and detection of genetic markers demand high sequencing accuracy and precise genome assembly for reliable results.

Methods: To assess the utility of nanopore sequencing for genotyping highly pathogenic bacteria with low mutation rates, we sequenced six reference strains using Oxford Nanopore Technologies (ONT) R10.

View Article and Find Full Text PDF

Brucellosis is caused by spp.; it can result in fetal loss and abortion, resulting in economic losses and negative effects on human health. Herein, a cross-sectional study on the epidemiology of spp.

View Article and Find Full Text PDF

Machine learning based on pangenome-wide association studies reveals the impact of host source on the zoonotic potential of closely related bacterial pathogens.

Commun Biol

August 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Chongqing Research Institute, Jilin University, Changchun, 130062, Jilin Province, China.

Variations in host species significantly impact bacterial growth traits and antibiotic resistance, making it essential to consider host origin when evaluating the zoonotic potential of pathogens. This study focuses on multiple Brucella species, which share highly similar genetic material, to explore the relationship between host origin and zoonotic potential by integrating pan-genome-wide association studies (pan-GWAS) with machine learning (ML). Our results present an open pangenome of Brucella spp.

View Article and Find Full Text PDF

Brucellosis is among the most widespread zoonotic diseases globally, affecting multiple domestic animal species. We report the first isolation of Brucella suis from a vaginal swab collected from an aborted cow in India. The isolate (VS1) was confirmed as B.

View Article and Find Full Text PDF