Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Osteoarthritis (OA) is the most common degenerative disease in joints among elderly patients. Senescence is deeply involved in the pathogenesis of osteoarthritis. Metformin is widely used as the first-line drug for Type 2 diabetes mellitus (T2DM), and has great potential for the treatment of other aging-related disorders, including OA. However, the role of metformin in OA is not fully elucidated. Therefore, our aim here was to investigate the effects of metformin on human chondrocytes.

Methods: After metformin treatment, expression level of microRNA-34a and SIRT1 in chondrocyte were detected with quantitative real-time PCR and immunofluorescence staining. Then, microRNA-34a mimic and small interfering RNA (siRNA) against SIRT1 (siRNA-SIRT1) were transfected into chondrocyte. Senescence-associated β-galactosidase (SA-β-gal) staining was performed to assess chondrocyte senescence. Chondrocyte viability was illustrated with MTT and colony formation assays. Western blot was conducted to detect the expression of P16, IL-6, matrix metalloproteinase-13 (MMP-13), Collagen type II (COL2A1) and Aggrecan (ACAN).

Results: We found that metformin treatment (1 mM) inhibited microRNA-34a while promoted SIRT1 expression in OA chondrocytes. Both miR-34a mimics and siRNA against SIRT1 inhibited SIRT1 expression in chondrocytes. SA-β-gal staining assay confirmed that metformin reduced SA-β-gal-positive rate of chondrocytes, while transfection with miR-34a mimics or siRNA-SIRT1 reversed it. MTT assay and colony formation assay showed that metformin accelerated chondrocyte proliferation, while miR-34a mimics or siRNA-SIRT1 weakened this effect. Furthermore, results from western blot demonstrated that metformin suppressed expression of senescence-associated protein P16, proinflammatory cytokine IL-6 and catabolic gene MMP-13 while elevated expression of anabolic proteins such as Collagen type II and Aggrecan, which could be attenuated by transfection with miR-34a mimics.

Conclusion: Overall, our data suggest that metformin regulates chondrocyte senescence and proliferation through microRNA-34a/SIRT1 pathway, indicating it could be a novel strategy for OA treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012483PMC
http://dx.doi.org/10.1186/s13018-023-03571-5DOI Listing

Publication Analysis

Top Keywords

chondrocyte senescence
12
mir-34a mimics
12
metformin
10
metformin regulates
8
regulates chondrocyte
8
senescence proliferation
8
proliferation microrna-34a/sirt1
8
microrna-34a/sirt1 pathway
8
metformin treatment
8
sirna sirt1
8

Similar Publications

Targeted Blockage of Pathological Extracellular Vesicles and Particles From Fibroblast-Like Synoviocytes for Osteoarthritis Relief: Proteomic Analysis and Cellular Effect.

J Extracell Vesicles

September 2025

Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.

Osteoarthritis (OA), the prevalent debilitating joint disorder, is accelerated by dysregulated intercellular crosstalk, yet the role of fibroblast-like synoviocyte (FLS)-derived extracellular vesicles and particles (EVPs) in disease progression remains to be elucidated. Here, integrative analysis of clinical specimens, animal models, and publicly available datasets revealed significant alterations in exosomal pathways within OA synovium. Proteomic profiling revealed distinct molecular signatures in EVPs derived from inflammatory and senescent FLSs, reflecting the pathophysiological status of their parent cells.

View Article and Find Full Text PDF

Oxidative stress imbalance and inadequate lubrication are the primary symptoms of osteoarthritis (OA), and they are also significant factors contributing to the progression of OA. Herein, an injectable hydrogel microsphere designed is presented to mitigate the progression of OA, comprising gelatin methacryloyl (GelMA), methacrylated hyaluronic acid (HAMA), 3-acrylamide-phenylboronic acid (3-AAPBA), chitin nanocrystals (ChNCs), and naringin (Nar). Specifically, positively charged ChNCs facilitated adhesion of microspheres to cartilage and enhanced their lubrication function.

View Article and Find Full Text PDF

Progress in antisenescence biomaterials for improved osteoarthritis therapy.

Acta Biomater

August 2025

The Second Rehabilitation Hospital of Shanghai, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China. Electronic address:

Osteoarthritis (OA) is a degenerative joint disease closely associated with aging for which current treatments are limited primarily to symptomatic relief and fail to reverse pathological progression. A growing body of evidence indicates that the accumulation of senescent cells is a central driver of OA pathogenesis. This review systematically summarizes the latest advancements in antisenescence biomaterials for OA therapy, emphasizing their potential to overcome the limitations of conventional approaches by improving drug targeting, prolonging drug release kinetics, and increasing bioavailability.

View Article and Find Full Text PDF

Osteoarthritis is a prevalent joint disease in the aging population. The hallmark of osteoarthritis is the degeneration of the joint cartilage, characterized by changes in chondrocytes including mitochondrial dysfunction. However, the precise mechanisms of how this affects chondrocyte homeostasis and whether such processes can be explored as therapeutic targets for osteoarthritis remain unclear.

View Article and Find Full Text PDF

Background: G protein-coupled receptor (GPCR) is an important class of membrane protein receptors that regulate a variety of physiological and pathological processes, including inflammation, pain, and cartilage metabolism, through G protein-mediated signaling. In recent years, the role of GPCR in osteoarthritis (OA) has gradually gained attention, but the mechanism of their effect on OA has not been fully explored.

Methods: We obtained five datasets containing OA and control samples, GSE55235, GSE55457, GSE51588, GSE82107, and GSE169077, from the GEO database.

View Article and Find Full Text PDF