Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bismuth-halide-based inorganic-organic hybrid materials (Bi-IOHMs) are desirable in luminescence-related applications due to their advantages such as low toxicity and chemical stability. Herein, two Bi-IOHMs of [Bpy][BiCl(Phen)] (, Bpy = -butylpyridinium, Phen = 1,10-phenanthroline) and [PP14][BiCl(Phen)]·0.25HO (, PP14 = -butyl--methylpiperidinium), containing different ionic liquid cations and same anionic units, have been synthesized and characterized. Single-crystal X-ray diffraction reveals that compounds and crystallize in the monoclinic space group of 2/ and 2, respectively. They both possess zero-dimensional ionic structures and exhibit phosphorescence at room temperature upon excitation of UV light (375 nm for , 390 nm for ), with microsecond lifetime (24.13 μs for and 95.37 μs for ). Hirshfeld surface analysis has been utilized to visually exhibit the different packing motifs and intermolecular interactions in and . The variation in ionic liquids makes compound have a more rigid supramolecular structure than , resulting in a significant enhancement in photoluminescence quantum yield (PLQY), that is, 0.68% for and 33.24% for . In addition, the ratio of the emission intensities for compounds and shows a correlation with temperature. This work provides new insight into luminescence enhancement and temperature sensing applications involving Bi-IOHMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005380PMC
http://dx.doi.org/10.3390/molecules28052380DOI Listing

Publication Analysis

Top Keywords

luminescence enhancement
8
enhancement temperature
8
temperature sensing
8
temperature
4
sensing properties
4
properties hybrid
4
hybrid bismuth
4
bismuth halides
4
halides achieved
4
achieved tuning
4

Similar Publications

A cationization strategy to simultaneously enhance reactive oxygen species generation and mitochondria targeting ability for enhanced photodynamic therapy.

J Mater Chem B

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.

Mitochondria-targeted photodynamic therapy (PDT) circumvents the short lifetime and action radius limitation of reactive oxygen species (ROS) and greatly improves the anticancer PDT efficacy. However, current approaches require different molecular engineering strategies to separately improve ROS production and introduce mitochondria targeting ability, which involve tedious synthetic procedures. Herein, we report a facile one-step cationization strategy that simultaneously improves the ROS generation efficiency and introduces mitochondria targeting ability for enhanced PDT.

View Article and Find Full Text PDF

Giant two-photon upconversion from 2D exciton in doubly-resonant plasmonic nanocavity.

Light Sci Appl

September 2025

Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, China.

Photon upconversion through high harmonic generation, multiphoton absorption, Auger recombination and phonon scattering performs a vital role in energy conversion and renormalization. Considering the reduced dielectric screening and enhanced Coulomb interactions, semiconductor monolayers provide a promising platform to explore photon upconversion at room temperature. Additionally, two-photon upconversion was recently demonstrated as an emerging technique to probe the excitonic dark states due to the extraordinary selection rule compared with conventional excitation.

View Article and Find Full Text PDF

Pure-Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers with Discontinuous Fused Benzene Rings.

Adv Mater

September 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Helicene-based circularly polarized luminescence (CPL) materials suffer from severely low color purity in circularly polarized organic light-emitting diodes (CP-OLEDs). Here, a novel molecular engineering strategy is introduced by replacing helicene containing continuous fused benzene rings with a multiple resonance (MR) framework comprising discontinuous fused benzene rings. This approach effectively suppresses high-frequency C─C bond stretching vibrations and enhances short-range charge transfer, enabling high color purity, CPL activity, and efficient thermally activated delayed fluorescence (TADF).

View Article and Find Full Text PDF

Optical imaging offers high sensitivity and specificity for noninvasive cancer detection, but conventional techniques suffer from limited probe accumulation, tissue autofluorescence, and poor depth resolution. Afterglow luminescence overcomes autofluorescence by emitting persistent light after excitation, yet its utility in vivo remains hindered by weak tumor enrichment and two-dimensional readouts lacking spatial context. Here, we report luminescent-magnetic nanoparticles (LM-NPs) coencapsulating luminescent trianthracene (TA) molecules and iron oxide cores within the amphiphilic polymer pluronic-F127.

View Article and Find Full Text PDF

Two birds with one stone: Versatile lanthanide-doped core-shell-shell nanoparticles with enhanced red upconversion for nanothermometry and MR imaging.

J Colloid Interface Sci

September 2025

Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610041, China. Electronic address: Zhaoy

Lanthanide-doped fluoride nanoparticles show great potential for optical thermometry and bioimaging. However, their applications are still constrained by inherent limitations in luminescence intensity and functional versatility. To overcome these challenges, we propose a core-active shell-inert shell nanostructure that integrates multifunctional capabilities within a single platform.

View Article and Find Full Text PDF