98%
921
2 minutes
20
Chemically labile ester linkages can be introduced into lignin by incorporation of monolignol conjugates, which are synthesized in planta by acyltransferases that use a coenzyme A (CoA) thioester donor and a nucleophilic monolignol alcohol acceptor. The presence of these esters facilitates processing and aids in the valorization of renewable biomass feedstocks. However, the effectiveness of this strategy is potentially limited by the low steady-state levels of aromatic acid thioester donors in plants. As part of an effort to overcome this, aromatic acid CoA ligases involved in microbial aromatic degradation were identified and screened against a broad panel of substituted cinnamic and benzoic acids involved in plant lignification. Functional fingerprinting of this ligase library identified four robust, highly active enzymes capable of facile, rapid, and high-yield synthesis of aromatic acid CoA thioesters under mild aqueous reaction conditions mimicking in planta activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467583 | PMC |
http://dx.doi.org/10.1002/cbic.202300001 | DOI Listing |
Inorg Chem
September 2025
Department of Chemistry and Chemical Engineering, Heze University, Heze, Shandong 274015, China.
Transition metal (TM)-doped silicon clusters represent critical model systems for understanding nanoscale hybridization and stability mechanisms. This study provides a comprehensive analysis of structural evolution, electronic properties, and thermodynamic stability in ruthenium-doped silicon clusters (RuSi̅, = 7-11) through integrated experimental and computational approaches. Anion photoelectron spectroscopy combined with density functional theory (DFT/B3LYP), coupled-cluster theory [CCSD(T)], and bonding analyses (AdNDP, NICS, ACID) reveals charge-state-dependent structural transitions, with full Ru encapsulation emerging at = 10 for anions and = 11 for neutrals.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Faculty of Agronomy and Agricultural Sciences, University of Dschang, PO. Box 222, Dschang, Cameroon.
Dissolved organic matter (DOM) plays a key role in grassland carbon biogeochemistry and shows sensitivity to global climate change, particularly nitrogen (N) deposition. We investigated the soil DOM molecular composition by UV-Vis and fluorescence spectroscopy, and FT-ICR MS through a N addition experiment (CK, N5, N10, N20, and N40 [0, 5, 10, 20, and 40 g N m-2 year-1, respectively]) in a desert steppe of northwest China. Moderate N inputs (N5-N20) caused a dose-dependent increase in DOM content (9.
View Article and Find Full Text PDFEnviron Res
September 2025
Guangdong Education Department Key Laboratory of Resources Comprehensive Utilization and Cleaner Production, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
Catalytic pyrolysis, an efficient thermochemical process, offers a promising pathway to valorize thermoset photovoltaic backsheets (TPV) into high-value chemicals. This study investigates the ex situ catalytic pyrolysis of TPV using two acidic catalysts, ZSM-5 and FeNi-ZSM-5, under varied operational conditions, with a focus on product distribution and process efficiency. The catalytic intervention significantly enhanced pyrolysis performance.
View Article and Find Full Text PDFEnviron Pollut
September 2025
Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China. Electronic address:
Dissolved organic matter is the main precursor for the formation of halogenated disinfection by-products (X-DBPs) during the disinfection of drinking water. However, the majority of the X-DBPs identified based on the artificially prepared water using the Suwannee River Natural Organic Matter (SRNOM) will bias the assessment of X-DBP formation potential in actual natural water. Herein, the non-targeted analysis based on ultrahigh-resolution mass spectrometry was employed to reveal the discrepancy in the molecular composition of X-DBPs and their precursors in SRNOM solution and actual authentic samples during disinfection.
View Article and Find Full Text PDFInt J Food Microbiol
August 2025
Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
The interactions between Saccharomyces cerevisiae and non-Saccharomyces yeasts through secreted metabolites play a crucial role in shaping wine aroma profiles, yet the underlying mechanisms remain inadequately understood. This study used a cell/medium separation strategy coupled with transcriptomic and metabolomic analyses to elucidate the influence of S. cerevisiae metabolites on aroma biosynthesis in Torulaspora delbrueckii during wine fermentation.
View Article and Find Full Text PDF