The Long Outer-Hair-Cell RC Time Constant: A Feature, Not a Bug, of the Mammalian Cochlea.

J Assoc Res Otolaryngol

Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The cochlea of the mammalian inner ear includes an active, hydromechanical amplifier thought to arise via the piezoelectric action of the outer hair cells (OHCs). A classic problem of cochlear biophysics is that the RC (resistance-capacitance) time constant of the hair-cell membrane appears inconveniently long, producing an effective cut-off frequency much lower than that of most audible sounds. The long RC time constant implies that the OHC receptor potential-and hence its electromotile response-decreases by roughly two orders of magnitude over the frequency range of mammalian hearing, casting doubt on the hypothesized role of cycle-by-cycle OHC-based amplification in mammalian hearing. Here, we review published data and basic physics to show that the "RC problem" has been magnified by viewing it through the wrong lens. Our analysis finds no appreciable mismatch between the expected magnitude of high-frequency electromotility and the sound-evoked displacements of the organ of Corti. Rather than precluding significant OHC-based boosts to auditory sensitivity, the long RC time constant appears beneficial for hearing, reducing the effects of internal noise and distortion while increasing the fidelity of cochlear amplification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121995PMC
http://dx.doi.org/10.1007/s10162-022-00884-wDOI Listing

Publication Analysis

Top Keywords

time constant
16
long time
8
mammalian hearing
8
long
4
long outer-hair-cell
4
time
4
outer-hair-cell time
4
constant
4
constant feature
4
feature bug
4

Similar Publications

Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.

View Article and Find Full Text PDF

Silicate Enhances the Long-Term Dechlorination Performance of Sulfidized Zero-Valent Iron: Trade-Off between Passivation and In Situ Oxidation.

Environ Sci Technol

September 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Sulfidized zero-valent iron (S-ZVI) holds promise in the remediation of chlorinated hydrocarbons. However, S-ZVI is susceptible to corrosion in aquifers with elevated dissolved oxygen (DO) levels. This study demonstrates, for the first time, that a trade-off between the passivation and oxidative corrosion of aged S-ZVI can be achieved in the presence of silicate to promote its dechlorination performance on trichloroethylene.

View Article and Find Full Text PDF

One important property of any drug product is its stability over time. A key objective in drug stability studies is to estimate the shelf-life of a drug, involving a suitable definition of the true shelf-life and the construction of an appropriate estimate of the true shelf-life. Simultaneous confidence bands (SCBs) for percentiles in linear regression are valuable tools for determining the shelf-life in drug stability studies.

View Article and Find Full Text PDF

Short-Time Relaxation and Anomalous Diffusion in Dynamic Covalent Networks.

ACS Macro Lett

September 2025

Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States.

Introducing dynamic covalent chemistries into polymer networks allows access to complex linear viscoelasticity, owing to the reversible nature of the dynamic bonds. While this macroscopic mechanical behavior is influenced by the dynamic exchange of these chemistries, connecting the microscopic dynamics to the bulk properties is hindered by the time scale conventional techniques can observe. Here, light scattering passive microrheology is applied to probe short-time dynamics of dynamic covalent networks that consist of telechelic benzalcyanoacetate (BCA) Michael acceptors and thiol-functionalized cross-linkers.

View Article and Find Full Text PDF

Investigation of the fundamental microscopic processes occurring in organic reactions is essential for optimising both organocatalysts and synthetic strategies. In this study, single-molecule fluorescence microscopy was employed to study the Diels-Alder reaction catalysed by a first-generation MacMillan catalyst, providing direct insights into its kinetic dynamics. This reaction proceeds via a series of reversible processes under equilibrium conditions (S ⇄ IM ⇄ IM → P, IM and IM: N,O-acetal and iminium ion intermediates, respectively).

View Article and Find Full Text PDF