A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Real-Time Visualisation of Reaction Kinetics and Dynamics: Single-Molecule Insights into the Iminium-Catalysed Diels-Alder Reaction. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Investigation of the fundamental microscopic processes occurring in organic reactions is essential for optimising both organocatalysts and synthetic strategies. In this study, single-molecule fluorescence microscopy was employed to study the Diels-Alder reaction catalysed by a first-generation MacMillan catalyst, providing direct insights into its kinetic dynamics. This reaction proceeds via a series of reversible processes under equilibrium conditions (S ⇄ IM ⇄ IM → P, IM and IM: N,O-acetal and iminium ion intermediates, respectively). The individual reaction trajectories of single molecules were directly observed in real-time, and the kinetic transitions between the different states were quantitatively analysed using a hidden Markov model, thereby enabling precise determination of the kinetic rate constants and transition probabilities at the single-molecule level. In particular, the unique structural features of the MacMillan catalyst were probed to reveal how specific interactions stabilise the reaction intermediates and influence their kinetic behaviours. These findings highlight the importance of single-molecule fluorescence microscopy in understanding the fundamental mechanisms of organic reactions and guiding the rational design of more effective catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202506535DOI Listing

Publication Analysis

Top Keywords

diels-alder reaction
8
organic reactions
8
single-molecule fluorescence
8
fluorescence microscopy
8
macmillan catalyst
8
reaction
6
real-time visualisation
4
visualisation reaction
4
reaction kinetics
4
kinetics dynamics
4

Similar Publications