Publications by authors named "Christopher A Shera"

Article Synopsis
  • Distortion Product Otoacoustic Emissions (DPOAE) are important for diagnosing hearing issues, but separating the signals generated by different mechanisms can be challenging due to their interactions.
  • This paper introduces a new method that simultaneously estimates both distortion (D) and reflection (R) components of DPOAE, improving frequency precision and reducing interference from the stimulus signals.
  • The proposed approach also enhances the analysis of corrupted data, adapts well to changes from treatments, and, while not uniformly superior to existing methods across all frequencies, shows improved performance in isolating D from R signals.
View Article and Find Full Text PDF

Measuring and analyzing both nonlinear-distortion and linear-reflection otoacoustic emissions (OAEs) combined creates what we have termed a "joint-OAE profile." Here, we test whether these two classes of emissions have different sensitivities to hearing loss and whether our joint-OAE profile can detect mild-moderate hearing loss better than conventional OAE protocols have. 2f1-f2 distortion-product OAEs and stimulus-frequency OAEs were evoked with rapidly sweeping tones in 300 normal and impaired ears.

View Article and Find Full Text PDF

The Reflections series takes a look back on historical articles from The Journal of the Acoustical Society of America that have had a significant impact on the science and practice of acoustics.

View Article and Find Full Text PDF

The cochlear tonotopic map determines where along the basilar membrane traveling waves of different frequencies peak. Endolymphatic hydrops has been hypothesized to shift the tonotopic map by altering the stiffness of the cochlear partition, especially in the apex. In this exploratory study performed in a handful of normal and hydropic ears, we report preliminary measurements of interaural differences assayed using behavioral pitch-matching supplemented by measurements of reflection otoacoustic-emission phase-gradient delays.

View Article and Find Full Text PDF

The extraordinary sensitivity of the mammalian inner ear has captivated scientists for decades, largely due to the crucial role played by the outer hair cells (OHCs) and their unique electromotile properties. Typically arranged in three rows along the sensory epithelium, the OHCs work in concert via mechanisms collectively referred to as the "cochlear amplifier" to boost the cochlear response to faint sounds. While simplistic views attribute this enhancement solely to the OHC-based increase in cochlear gain, the inevitable presence of internal noise requires a more rigorous analysis.

View Article and Find Full Text PDF

When elicited by two stimulus tones (at frequencies and , > ), the amplitudes of specific distortion-product otoacoustic emission (DPOAE) components exhibit a characteristic bandpass shape as the ratio between and is varied. This bandpass shape has been attributed to various mechanisms including intracochlear resonance, suppression, and wave interference, and has been proposed to be related to cochlear frequency tuning. While human studies suggest modest correlations between psychophysical tuning and the tuning of DPOAE amplitude vs.

View Article and Find Full Text PDF

Two hydrodynamic effects are introduced in the standard transmission-line formalism, the focusing of the pressure and fluid velocity fields near the basilar membrane and the viscous damping at the fluid-basilar membrane interface, which significantly affect the cochlear response in the short-wave region. In this region, in which the wavelength is shorter than the cochlear duct height, only a layer of fluid of order of the wavelength is effectively involved in the traveling wave. This has been interpreted [8] as a reduced fluid contribution to the system inertia in the peak region, which is a viewpoint common to the 3-D FEM solutions.

View Article and Find Full Text PDF

According to the dominant view, the mammalian cochlea spatially amplifies signals by actively pumping energy into the traveling wave. That is, signals are amplified as they propagate through a region where the medium's resistance is effectively negative. While signal amplification has been extensively studied in active cochlear models, the same cannot be said for amplification of internal noise.

View Article and Find Full Text PDF

At the 2004 Midwinter Meeting of the Association for Research in Otolaryngology, Glenis Long and her colleagues introduced a method for measuring distortion-product otoacoustic emissions (DPOAEs) using primary-tone stimuli whose instantaneous frequencies vary continuously with time. In contrast to standard OAE measurement methods, in which emissions are measured in the sinusoidal steady state using discrete tones of well-defined frequency, the swept-tone method sweeps across frequency, often at rates exceeding 1 oct/s. The resulting response waveforms are then analyzed using an appropriate filter (e.

View Article and Find Full Text PDF

Eye movements alter the relationship between the visual and auditory spatial scenes. Signals related to eye movements affect neural pathways from the ear through auditory cortex and beyond, but how these signals contribute to computing the locations of sounds with respect to the visual scene is poorly understood. Here, we evaluated the information contained in eye movement-related eardrum oscillations (EMREOs), pressure changes recorded in the ear canal that occur in conjunction with simultaneous eye movements.

View Article and Find Full Text PDF

We recently discovered a unique type of otoacoustic emission (OAE) time-locked to the onset (and offset) of saccadic eye movements and occurring in the absence of external sound (Gruters et al., 2018). How and why these eye-movement-related eardrum oscillations (EMREOs) are generated is unknown, with a role in visual-auditory integration being the likeliest candidate.

View Article and Find Full Text PDF

The intricate, crystalline cytoarchitecture of the mammalian organ of Corti presumably plays an important role in cochlear amplification. As currently understood, the oblique, Y-shaped arrangement of the outer hair cells (OHCs) and phalangeal processes of the Deiters cells serves to create differential "push-pull" forces that drive the motion of the basilar membrane via the spatial feedforward and/or feedbackward of OHC forces. In concert with the cochlear traveling wave, the longitudinal separation between OHC sensing and forcing creates phase shifts that yield a form of negative damping, amplifying waves as they propagate.

View Article and Find Full Text PDF

Auditory and visual information involve different coordinate systems, with auditory spatial cues anchored to the head and visual spatial cues anchored to the eyes. Information about eye movements is therefore critical for reconciling visual and auditory spatial signals. The recent discovery of eye movement-related eardrum oscillations (EMREOs) suggests that this process could begin as early as the auditory periphery.

View Article and Find Full Text PDF

The extraordinary sensitivity of the mammalian inner ear has captivated scientists for decades, largely due to the crucial role played by the outer hair cells (OHCs) and their unique electromotile properties. Typically arranged in three rows along the sensory epithelium, the OHCs work in concert via mechanisms collectively referred to as the "cochlear amplifier" to boost the cochlear response to faint sounds. While simplistic views attribute this enhancement solely to the OHC-based increase in cochlear gain, the inevitable presence of internal noise requires a more rigorous analysis.

View Article and Find Full Text PDF

Objectives: Endolymphatic hydrops (EH), a hallmark of Meniere disease, is an inner-ear disorder where the membranes bounding the scala media are distended outward due to an abnormally increased volume of endolymph. In this study, we characterize the joint-otoacoustic emission (OAE) profile, a results profile including both distortion- and reflection-class emissions from the same ear, in individuals with EH and speculate on its potential utility in clinical assessment and monitoring.

Design: Subjects were 16 adults with diagnosed EH and 18 adults with normal hearing (N) matched for age.

View Article and Find Full Text PDF

The frequency selectivity of the mammalian auditory system is critical for discriminating complex sounds like speech. This selectivity derives from the sharp tuning of the cochlea's mechanical response to sound, which is largely attributed to the amplification of cochlear vibrations by outer hair cells (OHCs). Due to its nonlinearity, the amplification process also leads to the generation of distortion products (DPs), some of which propagate out to the ear canal as DP otoacoustic emissions (DPOAEs).

View Article and Find Full Text PDF
Article Synopsis
  • Auditory and visual information process in distinct ways, with hearing linked to head movement and vision linked to eye movement, making eye movement data crucial for integrating these signals.
  • Recent findings of eye movement-related eardrum oscillations (EMREOs) indicate that this integration may begin at the ear level.
  • Comparisons of EMREOs in humans and rhesus monkeys reveal consistent patterns, showing both species have significant signals related to eye displacement, although differences exist in frequency and variation.
View Article and Find Full Text PDF

We recently discovered a unique type of low-frequency otoacoustic emission (OAE) time-locked to the onset (and offset) of saccadic eye movements and occurring in the absence of external sound (Gruters et al., 2018). How and why these eye-movement-related eardrum oscillations (EMREOs) are generated is unknown, with a role in visual-auditory integration being the likeliest candidate.

View Article and Find Full Text PDF

This study uses a 3-D representation of the cochlear fluid to extend the results of a recent paper [Sisto, Belardinelli, and Moleti (2021b). J. Acoust.

View Article and Find Full Text PDF

The cochlea of the mammalian inner ear includes an active, hydromechanical amplifier thought to arise via the piezoelectric action of the outer hair cells (OHCs). A classic problem of cochlear biophysics is that the RC (resistance-capacitance) time constant of the hair-cell membrane appears inconveniently long, producing an effective cut-off frequency much lower than that of most audible sounds. The long RC time constant implies that the OHC receptor potential-and hence its electromotile response-decreases by roughly two orders of magnitude over the frequency range of mammalian hearing, casting doubt on the hypothesized role of cycle-by-cycle OHC-based amplification in mammalian hearing.

View Article and Find Full Text PDF

In 1985, Bill Brownell and colleagues published the remarkable observation that cochlear outer hair cells (OHCs) express voltage-driven mechanical motion: electromotility. They proposed OHC electromotility as the mechanism for the elusive "cochlear amplifier" required to explain the sensitivity of mammalian hearing. The finding and hypothesis stimulated an explosion of experiments that have transformed our understanding of cochlear mechanics and physiology, the evolution of hair cell structure and function, and audiology.

View Article and Find Full Text PDF

The mammalian ear embeds a cellular amplifier that boosts sound-induced hydromechanical waves as they propagate along the cochlea. The operation of this amplifier is not fully understood and is difficult to disentangle experimentally. In the prevailing view, cochlear waves are amplified by the piezo-electric action of the outer hair cells (OHCs), whose cycle-by-cycle elongations and contractions inject power into the local motion of the basilar membrane (BM).

View Article and Find Full Text PDF

Otoacoustic emissions (OAEs) arise from one (or a combination) of two basic generation mechanisms in the cochlea: nonlinear distortion and linear reflection. As a result of having distinct generation processes, these two classes of emissions may provide non-redundant information about hair-cell integrity and show distinct sensitivities to cochlear pathology. Here, we characterize the relationship between reflection and distortion emissions in normal hearers across a broad frequency and stimulus-level space using novel analysis techniques.

View Article and Find Full Text PDF

Sounds entering the mammalian ear produce waves that travel from the base to the apex of the cochlea. An electromechanical active process amplifies traveling wave motions and enables sound processing over a broad range of frequencies and intensities. The cochlear amplifier requires combining the global traveling wave with the local cellular processes that change along the length of the cochlea given the gradual changes in hair cell and supporting cell anatomy and physiology.

View Article and Find Full Text PDF

Behavioral forward-masking thresholds with a spectrally notched-noise masker and a fixed low-level probe tone have been shown to provide accurate estimates of cochlear tuning. Estimates using simultaneous masking are similar but generally broader, presumably due to nonlinear cochlear suppression effects. So far, estimates with forward masking have been limited to frequencies of 1 kHz and above.

View Article and Find Full Text PDF