Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: A starch-lipid complex is a new type of resistant starch, which is of great importance for the prevention of chronic diseases such as diabetes. Most starch-lipid complexes usually need to be treated by heating to make them suitable for a variety of applications, and starch-based foods are generally not edible without a heat-treatment process. However, the digestion and structural properties of the starch-lipid complex will be changed after heating. In this study, microwave and conventional heating were used to treat debranched quinoa starch-oleic acid complexes (DQS-OA) with different water addition conditions, and the effects of the two methods on the physicochemical, digestive, and structural properties of DQS-OA were compared.

Results: The results of in vitro digestibility showed that the resistant starch content (235.34-269.55 g kg ) of the conventional heating-treated samples was significantly higher than that the microwave-treated samples (141.51-157.99 g kg ). Moreover, after microwave treatment, the short-range molecular order and crystalline structure of DQS-OA were destroyed and the particle size became smaller. In contrast, the thermal stability, enthalpy, and crystallinity of the complexes after conventional heating were improved. The ratio at 1047/1022 cm of complexes has also been increased.

Conclusion: This study demonstrated that conventional water-bath heating was better than microwave heating in increasing digestion resistance, improving the short-range and long-range molecular order, and promoting the formation of DQS-OA. With an increase in water addition, the influence of microwave or water-bath treatment on the properties of DQS-OA became greater. © 2022 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.12415DOI Listing

Publication Analysis

Top Keywords

conventional heating
12
structural properties
12
water addition
12
microwave conventional
8
physicochemical digestive
8
digestive structural
8
debranched quinoa
8
quinoa starch-oleic
8
starch-oleic acid
8
acid complexes
8

Similar Publications

High wet-strength MXene/lignin-containing cellulose nanofibrils composite films with Janus structure for electromagnetic shielding and Joule heating.

Int J Biol Macromol

September 2025

State Key Laboratory of Advanced Paper making and Paper-based Materials, South China University of Technology, Guangzhou, Guangdong Province, 510640, PR China.

Developing MXene-based electromagnetic interference (EMI) shielding composite films with exceptional wet mechanical properties is crucial to address the limitation of conventional MXene-based EMI shielding composite films in humid environments. Herein, we present a fabrication strategy for Janus-structured MXene-based EMI shielding composite films with exceptional wet mechanical and Joule heating performances. Through depositing tannic acid-modified MXene (TM) on maleic anhydride-modified lignin-containing cellulose nanofibril (MLCNF) film using a scalable vacuum filtration and hot-pressing strategy.

View Article and Find Full Text PDF

This study introduces the HydroTherm-Flow Smart Window (HTF Window), the first groundbreaking integration of thermochromic windows and Fe-Cr redox flow batteries (Fe-Cr RFBs), achieving dual functionalities of dynamic solar modulation-via dual-band (visible + near-infrared, NIR) modulation-and high-efficiency energy storage in a single component. Leveraging tunable hydroxypropyl cellulose (HPC) hydrogels, it enables ultrafast optical switching and autonomous nighttime opacity, overcoming the slow response and privacy limitations of conventional thermochromic systems. By repurposing the window as a compact electrolyte reservoir, it reduces the RFB spatial footprint while enhancing ionic conductivity by 30% via hydrogel "ion highways," achieving 77% energy efficiency with a 40% reduction in the solar heat gain coefficient.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs), carcinogenic persistent organic compounds, require ultrasensitive detection for health risk assessment of tobacco products. While traditional cigarette smoke contains FDA-monitored PAHs (e.g.

View Article and Find Full Text PDF

With the widespread application of lithium batteries in energy storage systems, their safety concerns have attracted increasing attention. Electrolyte leakage, as one of the primary safety hazards, necessitates highly sensitive and rapid detection technologies for early warning. Addressing the limitations of conventional methods (e.

View Article and Find Full Text PDF

Facile ultrasound-assisted synthesis of CsAgBiBr nanocrystals for enhanced visible-light photocatalysis.

Dalton Trans

September 2025

Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico.

We report a novel, simple, and environmentally friendly ultrasound-assisted method for the synthesis of CsAgBiBr nanocrystals. The synthesis is performed entirely at room temperature and under ambient air, without the need for inert atmospheres. Transmission electron microscopy (TEM) confirms an average particle size of approximately 6 nm, while X-ray diffraction (XRD) and Raman spectroscopy verify the high phase purity and structural stability of the nanocrystals.

View Article and Find Full Text PDF