Fe-biochar for simultaneous stabilization of chromium and arsenic in soil: Rational design and long-term performance.

Sci Total Environ

Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China. Elec

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Excess chromium (Cr) and arsenic (As) coexist in soil such as chromated copper arsenate (CCA) contaminated sites, leading to high risks of pollution. Fe-biochar with adjustable redox activity offers the possibility of simultaneous stabilization of Cr and As. Here, a series of Fe-biochar with distinct Fe/C structure were rationally produced for the remediation of Cr and As contaminated soil (BCX-Fe, X represented the biomass/Fe ratio). Adsorption tests showed that maximal adsorption of BC5-Fe for Cr(VI) and As(III) reached 73.7 and 81.3 mg/g. A 90-day soil remediation experiment indicated that the introduction of 3% (w/w) Fe-biochar reduced the leaching state of Cr(VI) by 93.8-99.7% and As by 75.2-95.6%. Under simulated groundwater erosion for 10 years and acid rain leaching for 7.5 years, the release levels of Cr(VI) and As in the BC5-Fe remediated soil could meet the groundwater class IV standard in China (Cr(VI)<0.1 mg/L, As<0.05 mg/L). Accelerated aging tests demonstrated that BC5-Fe had long-term Cr and As stabilization ability. The quenching experiment, EPR, and XPS suggested that the corrosion products of Fe dominated the adsorption and redox reactions, while the O groups acted as electron transfer stations and constituted redox microcirculation in the synchronous uptake of Cr/As. Based on these insights, we believe that our study will provide meaningful information about the application potential of Fe-biochar for the heavy metal contaminated soil remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.160843DOI Listing

Publication Analysis

Top Keywords

simultaneous stabilization
8
chromium arsenic
8
soil
5
fe-biochar
4
fe-biochar simultaneous
4
stabilization chromium
4
arsenic soil
4
soil rational
4
rational design
4
design long-term
4

Similar Publications

Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.

View Article and Find Full Text PDF

Multifunctional materials that simultaneously possess intrinsic magnetic and superhard properties, particularly those composed of light elements, have a wide range of applications in advanced sensors, shielding, durable devices, and other fields. However, research on the development and understanding of such materials remains limited. In this study, a series of 3D C covalent networks derived from the C fullerene precursor were theoretically designed.

View Article and Find Full Text PDF

A directional self-priming continuous-driven compartmentalized microfluidic chip for multiplexed pathogen detection.

Analyst

September 2025

Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.

Rapid and efficient screening of foodborne pathogens is crucial for preventing bacterial spread and food poisoning. However, developing a multi-detection method that is easy to operate, offers good stability, and achieves high efficiency remains an enormous challenge. Existing multiplexed nucleic acid detection methods suffer from complex designs, leading to complicated operations, and non-robust sample introduction, causing primer/probe crosstalk and false-positive results.

View Article and Find Full Text PDF

Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.

Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.

View Article and Find Full Text PDF

Ether-based electrolytes are widely acknowledged for their potential to form stable solid electrolyte interfaces (SEIs) for stable anode performance. However, conventional ether-based electrolytes have shown a tendency for cation-solvent co-intercalation phenomena on graphite electrodes, resulting in lower capacity and higher voltage platforms compared to those of neat cation insertion in ester-based electrolytes. In response, we propose the development of weakly solvating ether solvents to weaken the interaction between cations and solvents, thereby suppressing co-intercalation behavior.

View Article and Find Full Text PDF