98%
921
2 minutes
20
Carbon quantum dots (CDs) are a class of emerging carbonaceous nanomaterials that have received considerable attention due to their excellent fluorescent properties, extremely small size, ability to penetrate cells and tissues, ease of synthesis, surface modification, low cytotoxicity, and superior water dispersion. In light of these properties, CDs are extensively investigated as candidates for bioimaging probes, efficient drug carriers, and disease diagnostics. Functionalized CDs represent a promising therapeutic candidate for ocular diseases. Here, this work reviews the potential use of functionalized CDs in the diagnosis and treatment of eye-related diseases, including the treatment of macular and anterior segment diseases, as well as targeting Aβ amyloids in the retina.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202205754 | DOI Listing |
Anal Bioanal Chem
September 2025
Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.
View Article and Find Full Text PDFAdv Mater
September 2025
Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China.
The high sensitivity and wide linearity are crucial for flexible tactile sensors in adapting to diverse application scenarios with high accuracy and reliability. However, conventional optimization strategies of constructing microstructures suffer from the mutual restriction between the high sensitivity and wide linearity. Herein, a novel design of localized gradient conductivity (LGC) with partly covered low-conductivity (low-σ) carbon/Polydimethylsiloxane layer on high-conductivity (high-σ) silver nanowires film upon the micro-dome structure is proposed.
View Article and Find Full Text PDFAdv Pharm Bull
July 2025
Department of Physiology, Bankura Christian College, West Bengal-722101, India.
Carbon-based nanoparticles possess distinctive chemical, physical, and biological characteristics that render them suitable for biomedical uses. This paper reviews recent advancements in carbon-based nanomaterial (CBs) synthesis methods, emphasizing the importance of careful modification for biomedical uses, particularly in the passivation of drugs and chemicals on their surfaces. This review article examines information from 2021-2024 regarding carbon-based nanoparticles and the biomedical uses of graphene, fullerene, carbon nanotubes, nano horns, nanodiamonds, quantum dots, and graphene oxide.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P.R. China.
Urea photosynthesis from CO and N has profound environmental and energy implications. However, the simultaneous activation of CO and N, along with the promotion of C─N bond formation, remains a major challenge. Herein, the asymmetric interfacial sites (Zn─O─Ti) were engineered by building oxygen atom bridges between ZIF-8 and MIL-125 to enable efficient photocatalytic urea synthesis.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Biomedicine, University of Bergen, Bergen 5009, Norway.
When pathogenic bacteria colonize a wound, they can create an alkaline ecological niche that selects for their survival by creating an inflammatory environment restricting healthy wound healing to proceed. To aid healing, wound acidification has been exploited to disrupt this process and stimulate fibroblast growth, increase wound oxygen concentrations, minimize proteolytic activity, and restimulate the host immune system. Within this study, we have developed cobalt-doped carbon quantum dot nanoparticles that work together with mild acetic acid, creating a potent synergistic antimicrobial therapy.
View Article and Find Full Text PDF