Publications by authors named "Sigal Rencus-Lazar"

Engineering guest-responsive materials capable of controlled and precise sorption behavior and structural deformation in response to external stimuli is imperative for various applications. However, existing systems often exhibit complex, unpredictable dynamics, posing challenges for efficient control and utilization. Here, we design crystalline metal-peptide frameworks with tunable water-responsive (WR) dynamics by assembling glycine-threonine (Gly-Thr, GT) or glycine-serine (Gly-Ser, GS) peptides with zinc (Zn) ions, achieving either continuous or discrete threshold water-sorption-dependent phase transitions.

View Article and Find Full Text PDF

The rise of antibiotic-resistant bacteria emphasizes the urgent need for alternative therapeutic strategies. Self-assembling nanostructures, such as fluorenylmethoxycarbonyl-pentafluoro-l-phenylalanine (Fmoc-F-Phe), have shown promising antibacterial activity by selectively targeting bacterial membranes. However, the influence of fluorine positioning on hydrogel's physical and biological properties remains poorly understood.

View Article and Find Full Text PDF

Low-molecular-weight peptide-based hydrogels formed through self-assembly have emerged as promising candidates for biomedical applications. While the self-assembly process is known to affect the network morphology, its impact on mechanical properties and drug delivery remains poorly understood. In this work, it is explored how different gelation conditions influence the morphology, properties, and drug release profiles of dehydropeptide-based gels.

View Article and Find Full Text PDF

Fluorescent chemosensors are highly important for various applications including medical diagnostics, environmental monitoring, and industrial processing. Significant advancements have been made to produce sensors capable of detecting biologically and environmentally relevant ions. Specifically, carbazole-derived fluorophores are chemically stable agents with the ability to detect anions, cations, and small bioorganic molecules.

View Article and Find Full Text PDF

Amyloid fibril formation is a central biochemical process in pathology and physiology. Over decades, substantial advances were made in elucidating the mechanisms of amyloidogenesis, its links to disease, and the production of functional supramolecular structures. While the term "amyloid" denotes starch-like features of these assemblies, no evidence of amyloidogenic behavior of polysaccharides has been so far reported.

View Article and Find Full Text PDF

Short peptides are attractive building blocks for the fabrication of self-assembled materials with significant biological, chemical, and physical properties. The microscopic and macroscopic properties of assemblies are usually closely related to the dimensionality of formed hydrogen bond networks. Here, two completely different supramolecular architectures connected by distinct hydrogen bond networks were obtained by simply adding a hydroxyl group to switch from cyclo-tryptophan-alanine (cyclo-WA) to cyclo-tryptophan-serine (cyclo-WS).

View Article and Find Full Text PDF

Despite its disordered liquid-like structure, glass exhibits solid-like mechanical properties. The formation of glassy material occurs by vitrification, preventing crystallization and promoting an amorphous structure. Glass is fundamental in diverse fields of materials science, owing to its unique optical, chemical and mechanical properties as well as durability, versatility and environmental sustainability.

View Article and Find Full Text PDF

Polylactide (PLA), a biocompatible and biodegradable polymer, is widely used in diverse biomedical applications. However, the industry standard for converting lactide into PLA involves toxic tin (Sn)-based catalysts. To mitigate the use of these harmful catalysts, other environmentally benign metal-containing agents for efficient lactide polymerization have been studied, but these alternatives are hindered by complex synthesis processes, reactivity issues, and selectivity limitations.

View Article and Find Full Text PDF

Peptide-based nanomaterials can serve as promising drug delivery agents, facilitating the release of active pharmaceutical ingredients while reducing the risk of adverse reactions. We previously demonstrated that Cyclo-Histidine-Histidine (Cyclo-HH), co-assembled with cancer drug Epirubicin, zinc, and nitrate ions, can constitute an attractive drug delivery system, combining drug self-encapsulation, enhanced fluorescence, and the ability to transport the drug into cells. Here, we investigated both computationally and experimentally whether Cyclo-HH could co-assemble, in the presence of zinc and nitrate ions, with other cancer drugs with different physicochemical properties.

View Article and Find Full Text PDF

Hydrogen-bonded porous frameworks (HPFs) are versatile porous crystalline frameworks with diverse applications. However, designing chiral assemblies or biocompatible materials poses significant challenges. Peptide-based hydrogen-bonded porous frameworks (P-HPFs) are an exciting alternative to conventional HPFs due to their intrinsic chirality, tunability, biocompatibility, and structural diversity.

View Article and Find Full Text PDF

Inspired by natural hierarchical self-assembly of proteins and peptides, amino acids, as the basic building units, have been shown to self-assemble to form highly ordered structures through supramolecular interactions. The fabrication of functional biomaterials comprised of extremely simple biomolecules has gained increasing interest due to the advantages of biocompatibility, easy functionalization, and structural modularity. In particular, amino acid based assemblies have shown attractive physical characteristics for various bionanotechnology applications.

View Article and Find Full Text PDF

The development of next-generation bioelectronics, as well as the powering of consumer and medical devices, require power sources that are soft, flexible, extensible, and even biocompatible. Traditional energy storage devices (typically, batteries and supercapacitors) are rigid, unrecyclable, offer short-lifetime, contain hazardous chemicals and possess poor biocompatibility, hindering their utilization in wearable electronics. Therefore, there is a genuine unmet need for a new generation of innovative energy-harvesting materials that are soft, flexible, bio-compatible, and bio-degradable.

View Article and Find Full Text PDF
Article Synopsis
  • Variation in molecular architecture impacts the electronic and supramolecular structure of biomolecular assemblies, influencing their piezoelectric response, but the connections between molecular chemistry, crystal packing, and electromechanical response are not fully understood.
  • Researchers explored enhancing piezoelectricity in amino acid-based assemblies through supramolecular engineering by modifying side-chains in acetylated amino acids, resulting in greater polarization and improved piezoelectric properties.
  • The study demonstrated the creation of an L-AcW crystal-based piezoelectric power nanogenerator that could successfully power an LED, showcasing the potential of amino acid-based materials for developing advanced functional biomaterials.
View Article and Find Full Text PDF

Minimalistic peptide- and metabolite-based supramolecular hydrogels have great potential relative to traditional polymeric hydrogels in various biomedical and technological applications. Advantages such as remarkable biodegradability, high water content, favorable mechanical properties, biocompatibility, self-healing, synthetic feasibility, low cost, easy design, biological function, remarkable injectability, and multi-responsiveness to external stimuli make supramolecular hydrogels promising candidates for drug delivery, tissue engineering, tissue regeneration, and wound healing. Non-covalent interactions such as hydrogen bonding, hydrophobic interactions, electrostatic interactions, and π-π stacking interactions play key roles in the formation of peptide- and metabolite-containing low-molecular-weight hydrogels.

View Article and Find Full Text PDF

Hydrogen bonds are non-covalent interactions and essential for assembling supermolecules into ordered structures in biological systems, endowing crystals with fascinating physical properties, and inspiring the construction of eco-friendly electromechanical devices. However, the interplay between hydrogen bonding and the physical properties is not fully understood at the molecular level. Herein, we demonstrate that the physical property of biological crystals with double-layer structures could be enhanced by rationally controlling hydrogen bonding interactions between amino and carboxyl groups.

View Article and Find Full Text PDF

Tissue engineering (TE) is a rapidly expanding field aimed at restoring or replacing damaged tissues. In spite of significant advancements, the implementation of TE technologies requires the development of novel, highly biocompatible three-dimensional tissue structures. In this regard, the use of peptide self-assembly is an effective method for developing various tissue structures and surface functionalities.

View Article and Find Full Text PDF

Amino acids are the most simplistic bio-building blocks and perform a variety of functions in metabolic activities. Increasing publications report that amino acid-based superstructures present amyloid-like characteristics, arising from their supramolecular β-sheet secondary structures driven by hydrogen-bonding-connected supramolecular β-strands, which are formed by head-to-tail hydrogen bonds between terminal amino and carboxyl groups of the adjacent residues. Therefore, the establishment of the structure-function relationships is critical for exploring the properties and applications of amino acid assemblies.

View Article and Find Full Text PDF

Carbon quantum dots (CDs) are a class of emerging carbonaceous nanomaterials that have received considerable attention due to their excellent fluorescent properties, extremely small size, ability to penetrate cells and tissues, ease of synthesis, surface modification, low cytotoxicity, and superior water dispersion. In light of these properties, CDs are extensively investigated as candidates for bioimaging probes, efficient drug carriers, and disease diagnostics. Functionalized CDs represent a promising therapeutic candidate for ocular diseases.

View Article and Find Full Text PDF

Flexible and biocompatible metal peptide frameworks (MPFs) derived from short and ultra-short peptides have been explored for the storage of greenhouse gases, molecular recognition, and chiral transformations. In addition to short flexible peptides, peptides with specifically folded conformations have recently been utilized to fabricate a variety of metal helix frameworks (MHFs). The secondary structures of the peptides govern the structure-assembly relationship and thereby control the formation of three-dimensional (3D)-MHFs.

View Article and Find Full Text PDF

The apparent piezoelectricity of biological materials is not yet fully understood at the molecular level. In particular, dynamic noncovalent interactions, such as host-guest binding, are not included in the classical piezoelectric model, which limits the rational design of eco-friendly piezoelectric supramolecular materials. Here, inspired by the conformation-dependent mechanoresponse of the Piezo channel proteins, we show that guest-host interactions can amplify the electromechanical response of a conformationally mobile peptide metal-organic framework (MOF) based on the endogenous carnosine dipeptide, demonstrating a new type of adaptive piezoelectric supramolecular material.

View Article and Find Full Text PDF

The formation of ordered protein and peptide assemblies is a phenomenon related to a wide range of human diseases. However, the mechanism of assembly at the molecular level remains largely unknown. Minimal models enable the exploration of the underlying interactions that are at the core of such self-assembly processes.

View Article and Find Full Text PDF

Aimed to decipher the levels of metabolites, metabolomics can now advance to unraveling their functionalities in various contexts. Here, the authors present the metabolite medicine concept, integrating classical metabolomics methods with advanced computational and structural tools to facilitate functional studies.

View Article and Find Full Text PDF

The structural arrangement of amino acid residues in native enzymes underlies their remarkable catalytic properties, thus providing a notable point of reference for designing potent yet simple biomimetic catalysts. Herein, we describe a minimalistic approach to construct a dipeptide-based nano-superstructure with enzyme-like activity. The self-assembled biocatalyst comprises one peptide as a single building block, readily synthesized from histidine.

View Article and Find Full Text PDF

Protein misfolding and aggregation are associated with human diseases and aging. However, microorganisms widely exploit the self-propagating properties of misfolded infectious protein particles, prions, as epigenetic information carriers that drive various phenotypic adaptations and encode molecular information. Microbial prion research has faced a paradigm shift in recent years, with breakthroughs that demonstrate the great functional and structural diversity of these agents.

View Article and Find Full Text PDF

Bottom-up self-assembled bioinspired materials have attracted increasing interest in a variety fields. The use of peptide supramolecular semiconductors for optoelectronic applications is especially intriguing. However, the characteristic thermal unsustainability limits their practical application.

View Article and Find Full Text PDF