Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Flexible and biocompatible metal peptide frameworks (MPFs) derived from short and ultra-short peptides have been explored for the storage of greenhouse gases, molecular recognition, and chiral transformations. In addition to short flexible peptides, peptides with specifically folded conformations have recently been utilized to fabricate a variety of metal helix frameworks (MHFs). The secondary structures of the peptides govern the structure-assembly relationship and thereby control the formation of three-dimensional (3D)-MHFs. Particularly, the hierarchical structural organization of peptide-based MHFs has not yet been discussed in detail. Here, we describe the recent progress of metal-driven folded peptide assembly to construct 3D porous structures for use in future energy storage, chiral recognition, and biomedical applications, which could be envisioned as an alternative to the conventional metal-organic frameworks (MOFs).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202214583 | DOI Listing |