98%
921
2 minutes
20
Fengycin is a lipopeptide with broad-spectrum antifungal activity. However, its low yield limits its commercial application. Therefore, we iteratively edited multiple target genes associated with fengycin synthesis by combinatorial metabolic engineering. The ability of 168 to manufacture lipopeptides was restored, and the fengycin titer was 1.81 mg/L. Fengycin production was further increased to 174.63 mg/L after knocking out pathways associated with surfactin and bacillaene synthesis and replacing the native promoter (P) with the P promoter. Subsequently, fengycin levels were elevated to 258.52 mg/L by upregulating the expression of relevant genes involved in the fatty acid pathway. After blocking spore and biofilm formation, fengycin production reached 302.51 mg/L. Finally, fengycin production was increased to approximately 885.37 mg/L after adding threonine in the optimized culture medium, which was 488-fold higher compared with that of the initial strain. Integrated strain engineering provides a strategy to construct a system for improving fengycin production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.2c00380 | DOI Listing |
Front Microbiol
August 2025
Guizhou Botanical Garden, Guiyang, China.
is the main cause of soft rot in kiwifruit, significantly reducing both yield and quality. While chemical treatments are commonly used, their effectiveness is limited and they may pose environmental risks. As a result, biological control using Bacillus species has emerged as a promising alternative.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Advanced Production and Intelligent Systems (ARISE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
The increasing frequency of extreme weather events affects ecosystems and threatens food production. The reduction of chemical pesticides, together with other ecological approaches, is crucial to more sustainable agriculture. Plant-parasitic nematodes (PPN), especially root-knot nematodes (RKN), spp.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
Denitrifying carbon source is mainly used for microbial growth and proliferation, substrate transport, and nitrate bioreduction. This paper reported a new approach to dramatically promote denitrification and reduce NO emission of low carbon-to-nitrogen ratio (C/N) municipal wastewater by introducing two microorganisms to increase carbon flux to nitrate bioreduction without increasing the external carbon source. At a C/N of 3, the total nitrogen removal efficiency of the model denitrifier () was increased from 48.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2025
Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
Plasma-driven biocatalysis utilizes in situ HO production by atmospheric pressure plasmas to drive HO-dependent enzymatic reactions. Having previously established plasma-driven biocatalysis using recombinant unspecific peroxygenase from Agrocybe aegerita (rAaeUPO) to produce (R)-1-phenylethanol from ethylbenzene, we here employed CypC from Bacillus subtilis 168 (synonyms: YbdT, P450BSβ), an integral enzyme of surfactin and fengycin biosynthesis. CypC naturally hydroxylates medium and long-chain carboxylic acids.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian, China.
(Bv) is a widely used biocontrol agent against plant diseases, mainly because its genome contains numerous non-ribosomal peptide synthetases (NRPS) gene clusters for the synthesis of various cyclic lipopeptides (CLPs). The domesticated strain Bv916, capable of co-producing four CLPs, has been successfully applied for green control of rice sheath blight and angular leaf spot. To enhance Bv916's biological control efficacy while maintaining environmental safety, it is essential to establish a food-grade gene editing platform in Bv916.
View Article and Find Full Text PDF