98%
921
2 minutes
20
The distribution of nanoparticles between aqueous and organic phases is universally considered as the starting point in predicting the fate and bioavailability of engineered nanoparticles in the environment. However, the theoretical basis for determining the distribution of nanoparticles in the immiscible water-oil system remains unclear. Here, for the first time, theoretical calculations were conducted to illustrate the underlying mechanism. It was suggested that the distribution of nanoparticles was largely controlled by the surface charge, particle size and surface hydrophobicity, and the water-oil interface was not the favorable phase for nanoparticles until a size threshold (10 nm) was met and the particle surface became amphiphilic. The theoretical results were verified by the experimental approaches of different nanoparticles distributed in the water-octanol mixture. The neutralization of a charged surface led to enhanced distribution into octanol for hydrophobic nanoparticles (e.g., aqueous C), yet it had little effect on hydrophilic nanoparticles (e.g., fullerol). More nanoparticles were trapped at the water-oil interface when size grew larger (e.g., Ag-CIT and Au-CIT with citrate) and the surface rendered amphiphilic by polymeric coatings (e.g., Ag-PVP with polyvinylpyrrolidone), though larger hydrophobic nanoparticles like aqu-nC tended to stay in the octanol. The surface charge and hydrophobicity may have an important impact on the path-dependent distribution of nanoparticles in water- octanol system. The mechanistic insights based on theoretical calculations and experimental approaches will facilitate the accurate prediction of the distribution of engineered nanoparticles in biological and environmental systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.159962 | DOI Listing |
ACS Nano
September 2025
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Optical imaging offers high sensitivity and specificity for noninvasive cancer detection, but conventional techniques suffer from limited probe accumulation, tissue autofluorescence, and poor depth resolution. Afterglow luminescence overcomes autofluorescence by emitting persistent light after excitation, yet its utility in vivo remains hindered by weak tumor enrichment and two-dimensional readouts lacking spatial context. Here, we report luminescent-magnetic nanoparticles (LM-NPs) coencapsulating luminescent trianthracene (TA) molecules and iron oxide cores within the amphiphilic polymer pluronic-F127.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.
View Article and Find Full Text PDFIndian J Nucl Med
August 2025
Department of Physics, Shi.C., Islamic Azad University, Shiraz, Iran.
Background: Another approach to improve the dose conformity is to use charged particles like protons instead of the conventional X- and γ-rays. Protons exhibit a specific depth-dose distribution which allows to achieve a more targeted dose deposition and a significant sparing of healthy tissue behind the tumor. In particular, proton therapy has, therefore, become a routinely prescribed treatment for tumors located close to sensitive structures.
View Article and Find Full Text PDFBiomater Sci
September 2025
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, P.R. China. iamzgteng@
Breast cancer is the most prevalent malignancy worldwide, yet conventional therapies are invasive and prone to resistance, recurrence, and metastasis. Photodynamic therapy (PDT) is a promising noninvasive modality, but its efficacy is limited by tumor hypoxia and poor photosensitizer delivery. Here, we report a photoacoustic-imaging nanomotor, PPIC, which addresses these challenges through integrated functions of oxygen production, deep tissue penetration and photoacoustic imaging.
View Article and Find Full Text PDFJ Control Release
September 2025
Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA. Electronic address:
Most chemotherapeutics distribute non-specifically throughout the body, resulting in off-target toxicities. Nanoparticle (NP) formulations provide a strategy to improve drug delivery by extending circulation time, protecting therapeutic agents from degradation, and enabling controlled release. However, delivering NPs effectively to solid tumors remains challenging due to the barriers within the tumor microenvironment.
View Article and Find Full Text PDF