98%
921
2 minutes
20
Whispering gallery mode polymer resonators are becoming competitive with devices made of other materials, however, the inherent thermal sensitivity of the materials and the small size limit their applications, such as high-precision optical gyroscope. Here, a method is proposed for fabricating large-scale NOA65 resonators with quality factors greater than 10 on a chip employing superoleophobic. The sandwich structure as the core layer of resonator is used to present the flexible remodeling characteristics, the surface roughness remains below 1 nm when the diameter changes by more than 25%. Importantly, theoretical and experimental results show that under the tuning action of external pressure, the equivalent thermal expansion coefficient of the resonator gradually approaches the glass sheet on both sides with the variation of 2 × 10 /°C∼0.9 × 10 /°C, and the corresponding temperature response range of 0.12 nm/°C∼-0.056 nm/°C shows the promise of temperature insensitivity resonators on a chip.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.471275 | DOI Listing |
Phys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2025
Department of Biochemistry and Biophysics, Stockholm University, Sweden. Electronic address:
Aggregation of the amyloid-β peptide (Aβ) characterises and probably causes Alzheimer's disease. While lipid-mediated Aβ aggregation has been extensively studied for the 40-residue variant Aβ40, the interaction of the 42-residue variant Aβ42 with membranes has received less attention. Our time-resolved infrared spectra demonstrate that Aβ42 oligomers preserve their β-sheet structure in aqueous solution also in a membrane-mimicking environment consisting of either 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine (POPC, zwitterionic) or 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1'racglycerol) (POPG, anionic) vesicles.
View Article and Find Full Text PDFPlanta
September 2025
Department of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Jeonbuk State, Korea.
PHYTOCHROME INTERACTING FACTOR4 (PIF4) plays an important role in regulating plant thermomorphogenesis. In this study, two PIF4 homologous genes, BcPIF4-1 and BcPIF4-2 (Brassica rapa subsp. CHINENSIS PIF4-1 and PIF4-2), were investigated.
View Article and Find Full Text PDFACS Sens
September 2025
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China.
Accurate strain monitoring in environments with coexisting mechanical deformation and temperature fluctuations─such as solid rocket propellants, battery enclosures, and human ligaments─remains a longstanding challenge for flexible electronics. Conventional strain sensors suffer from significant thermal drift due to the intrinsic temperature dependence of their sensing materials, limiting their reliability in wireless and implantable applications. Here, we report an intrinsically temperature-insensitive, highly sensitive, wireless flexible strain sensor based on near-field communication technology.
View Article and Find Full Text PDFGenes (Basel)
July 2025
Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Key Laboratory of Cotton Biology and Genetic Breeding in the Northwest Inland Cotton Production Region, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China.
The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton ( spp.) remain poorly characterized.
View Article and Find Full Text PDF