Highly Sensitive Electrochemical Detection of Paraquat in Environmental Water Samples Using a Vertically Ordered Mesoporous Silica Film and a Nanocarbon Composite.

Nanomaterials (Basel)

Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Herein, we demonstrate a sensitive and rapid electrochemical method for the detection of paraquat (PQ) using a glassy carbon electrode (GCE) modified with vertically ordered mesoporous silica films (VMSF) and a nanocarbon composite. The three-dimensional graphene-carbon nanotube (3DG-CNT) nanocarbon composite has a 3D network structure, a large electroactive area and oxygen-containing groups, promoting electron transfer between PQ and the underlying electrode and providing a suitable microenvironment for the stable growth of VMSF. This VMSF/3DG-CNT nanocomposite film could be prepared on the GCE's surface by a two-step electrochemical method with good controllability and convenience. Owing to the synergistic effect of the electrocatalytic ability of 3DG-CNT and the electrostatically enriched capacity of VMSF, the proposed VMSF/3DG-CNT/GCE has superior analytical sensitivity compared with the bare GCE. Furthermore, VMSF has excellent anti-fouling ability that makes the fabricated sensor exhibit satisfactory performance for direct analysis of PQ in environmental water samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610481PMC
http://dx.doi.org/10.3390/nano12203632DOI Listing

Publication Analysis

Top Keywords

nanocarbon composite
12
detection paraquat
8
environmental water
8
water samples
8
vertically ordered
8
ordered mesoporous
8
mesoporous silica
8
electrochemical method
8
highly sensitive
4
sensitive electrochemical
4

Similar Publications

Copper-Modified Nanocarbon Composites for Enhanced Hydrogen Sulfide Adsorption: Synergistic Effects of Persistent Free Radicals and Cu-Based Oxides.

Langmuir

September 2025

Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China.

In this study, copper-modified nanocarbon composites (OMC) were successfully prepared using two-dimensional carbon nanosheets as the material substrate, the low-temperature hydrothermal method as the main process, and copper nitrate as the modifier. The effects of the modifier dosage ratio, hydrothermal temperature, and residence time on the structure and hydrogen sulfide (HS) adsorption performance of OMC were investigated. The results show that the OMC with persistent free radicals and copper oxides prepared under the conditions of a mass ratio of copper nitrate to two-dimensional carbon nanosheets of 2, a hydrothermal temperature of 130 °C, and a time of 8 h, respectively, has the best adsorption performance for HS, with an adsorption sulfur capacity of up to 46.

View Article and Find Full Text PDF

Potassium metal batteries are considered as promising candidates for next-generation energy storage systems. However, their practical development is hindered by the insufficient capacity output and persistent dendritic proliferation at the anode side. Here graphene-skinned hexagonal boron nitride powder is demonstrated synthesized via fluidized bed-chemical vapor deposition, realizing conformal growth of layer-controlled graphene (5-90 layers) over h-BN with atomically coupled heterointerfaces.

View Article and Find Full Text PDF

As a novel carbon material, multi-walled carbon nanotubes (MWCNTs) have attracted significant research interest in energetic applications due to their high aspect ratio and exceptional physicochemical properties. However, their inherent structural characteristics and poor dispersion severely limit their practical utilization in solid propellant formulations. To address these challenges, this study developed an innovative reverse-engineering strategy that precisely confines MWCNTs within a three-dimensional FeO gel framework through a controllable sol-gel process followed by low-temperature calcination.

View Article and Find Full Text PDF

The development of lightweight composites with superior mechanical properties and electromagnetic interference (EMI) shielding performance is essential for various structural and functional applications. This study investigates the effect of hybrid nanocarbon (graphene nanosheet (GNS) and carbon nanotube (CNT)) reinforcements on the properties of magnesium (Mg) matrix composites. Specifically, the GNS-CNT hybrid, which forms a three-dimensional interconnected network structure, was analyzed and compared to composites reinforced with only GNSs or CNTs.

View Article and Find Full Text PDF

Achieving high energy density in lithium-sulfur (Li-S) batteries necessitates thick cathodes with high sulfur loadings and a lean electrolyte. However, these configurations introduce critical challenges, including low conductivity, polysulfide shuttling, volume expansion, and mechanical instability, which significantly impede battery performance. In this study, we present a regulated electronic and ionic conductive framework that integrates carbon nanotubes (CNTs) and sulfur onto the surface of air plasma-treated aramid fibers (APAF) in a layer-by-layer fashion (denoted as CNT/S/APAF).

View Article and Find Full Text PDF