98%
921
2 minutes
20
Activated sludge process was a low-cost alternative method compared to the conventional physicochemical process for the treatment of heavy metal-containing wastewater. In the present study, the removal efficiency of Pb, Cu, and Ni from wastewater by a sequencing batch reactor (SBR) activated sludge system was investigated, and the mechanism was revealed by static adsorption experiment of activated sludge. The results showed that the activated sludge in the SBR system was effective in removing Pb and Cu from wastewater at 10 mg·L initial concentration, with a removal efficiency of 83.1 ~ 90.0% for Pb and 74.3 ~ 80.6% for Cu, respectively. However, the removal efficiency for Ni was only 0 ~ 6.2%. Static adsorption experiments showed that the adsorption capacity of activated sludge for three heavy metals was shown as Pb > Cu > Ni. When the initial concentration was 20 mg·L, the equilibrium adsorption capacity of activated sludge for Pb, Cu, and Ni was 18.35 mg·g, 17.06 mg·g, and 8.37 mg·g, respectively. The main adsorption mechanisms for Pb and Cu were ligand exchange, electrostatic adsorption, and surface organic complexation processes, but Ni removal mechanism mainly included electrostatic adsorption and surface organic complexation processes, showing that Ni removal was inhibited in the presence of Pb and Cu. The physicochemical properties and microbial diversity of activated sludge were greatly affected by the heavy metals in the SBR system, and genus Rhodobacter was found to be dominant bacteria enabling resistance to heavy metal ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-23693-3 | DOI Listing |
Microbes Environ
September 2025
Sustainable Process Engineering Center, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya.
Nitrifying communities in activated sludge play a crucial role in biological nitrogen removal processes in municipal wastewater treatment plants. While extensive research has been conducted in temperate regions, limited information is available on nitrifiers in tropical regions. The present study investigated all currently known nitrifying communities in two full-scale municipal wastewater treatment plants in Malaysia operated under low-dissolved oxygen (DO) (0.
View Article and Find Full Text PDFWater Res
September 2025
Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, 050061, China; The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang, 050061, China.
Groundwater nitrate (NO) and sulfate (SO) pollution in semi-arid regions has attracted widespread attention. However, unveiling the dynamics and sources of NO and SO in regional groundwater is challenging because of complex anthropogenic activities and hydrogeological conditions. This study combined physicochemistry and multiple stable isotopes (δH-HO, δO-HO, δN-NO, δO-NO, δS-SO, and δO-SO) to explore the spatiotemporal patterns, driving factors, sources, and potential health hazards of NO and SO in groundwater on the Loess Plateau, China.
View Article and Find Full Text PDFJ Environ Manage
September 2025
National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Ch
The anaerobic ammonia oxidation (anammox) process has attracted considerable interest for its advantages in low energy requirements, reduced sludge output, and eliminating the need for external carbon sources. However, its application is constrained by the long generation time, slow growth, and challenges in enriching anammox bacteria. Studies indicate that carbon material addition significantly accelerates anammox bacteria proliferation, enhances nitrogen removal efficiency, and improves anammox microbial activity.
View Article and Find Full Text PDFJ Environ Manage
September 2025
State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China. Electronic address:
Multivalent cations are commonly employed to accelerate sludge aggregation and granulation, yet they often compromise intragranular mass transfer and diminish microbial activity. Here, the effect of Fe(III) dosing on granule formation and anammox-driven nitrogen removal over a 110-day continuous operation was investigated. Fe(III) supplementation enhanced interactions with extracellular polymeric substances (EPS), transforming flocculent biomass into highly porous granules and yielding a 67.
View Article and Find Full Text PDFJ Contam Hydrol
September 2025
School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
Biological denitrification is an essential method for sewage treatment, though its efficiency is often constrained by low temperatures and insufficient organic carbon sources. In this study, a novel cold-tolerant heterotrophic nitrification-aerobic denitrification bacterium, Pseudomonas fluorescens sp. Z03, was isolated from activated sludge, and its denitrification performance was evaluated.
View Article and Find Full Text PDF