98%
921
2 minutes
20
Integral three-dimensional (3D) displays can display naturally viewable 3D images. However, displaying 3D images with high pixel density is difficult because the maximum pixel number is restricted by the number of lenses of a lens array. Therefore, we propose a method for increasing the maximum pixel density of 3D images by optically synthesizing the displayed images of an integral 3D display and high-definition two-dimensional display using a half mirror. We evaluated the improvements in 3D image resolution characteristics through simulation analysis of the modulation transfer function. We developed a prototype display system that can display 3D images with a maximum resolution of 4K and demonstrated the effectiveness of the proposed method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.469045 | DOI Listing |
J Synchrotron Radiat
November 2025
Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
Nano-laminography combines the penetrating power of hard X-rays with a tilted rotational geometry to deliver high-resolution, three-dimensional images of laterally extended, flat specimens that are otherwise incompatible with, or difficult to image using, conventional nano-tomography. In this work, we demonstrate a full-field, X-ray nano-laminography system implemented with the transmission X-ray microscope at beamline 32-ID of the upgraded Advanced Photon Source at Argonne National Laboratory, USA. By rotating the sample around an axis inclined by 20° to the incident beam, the technique minimizes the long optical path lengths that would otherwise generate excessive artifacts when planar samples are imaged edge-on.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
Modern electronic systems are evolving toward miniaturized designs, flexible architectures, and high-power-density requirements. However, progress in developing electrical insulation materials that integrate mechanical robustness, flexibility, and thermal stability remains a critical challenge. This study introduces a novel nacre-inspired aramid-vermiculite nanopaper featuring a 3D interconnected layered network, designed for use in flexible electrical insulating applications.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Chemistry, Wuhan University, Wuhan 430072, China.
Three-dimensional printing (3DP) technology enables the flexible fabrication of integrated monolithic microextraction chips for high-throughput sample pretreatment. Meanwhile, the extraction performance of 3DP-based channels is largely limited by printer resolution and the commercially available printing materials. In this work, a 3DP array monolithic microextraction chip (AMC) was fabricated by integrating 26-array helical monolithic microextraction channels for sample pretreatment and 52-array gas valves for fluid control.
View Article and Find Full Text PDFRev Cardiovasc Med
August 2025
Department of Cardiology, University Hospitals of Leicester NHS Trust, Glenfield Hospital, LE3 9QP Leicester, UK.
Adult congenital heart disease (ACHD) constitutes a heterogeneous and expanding patient cohort with distinctive diagnostic and management challenges. Conventional detection methods are ineffective at reflecting lesion heterogeneity and the variability in risk profiles. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL) models, has revolutionized the potential for improving diagnosis, risk stratification, and personalized care across the ACHD spectrum.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
We report the synthesis of three-dimensional (3D) graphene/mesoporous carbon/ZIF-derived microporous carbon (G/MC/ZDC-A) heterostructures through an interface-reinforced assembly. This hierarchical architecture synergistically integrates 2D graphene nanosheets with 0D ZDC nanoparticles a mesoporous carbon "binder", effectively mitigating the agglomeration issue while establishing continuous charge transport pathways. When configurated as symmetric supercapacitors with EMIMBF electrolyte, the obtained G/MC/ZDC-A demonstrates decent capacitive performance: a high specific capacitance (240 F g at 0.
View Article and Find Full Text PDF