98%
921
2 minutes
20
With the development of photonic integrated circuits and optical information processing on thin-film lithium niobate (TFLN), the realization of the TFLN-based polarization device is becoming more and more crucial. Here, we demonstrate a polarization modulator on the TFLN platform without polarization diversity. Without polarization manipulation elements, the device only composes a phase modulator and a two-dimensional grating coupler. The structure features small footprint and high fabrication tolerance. The device holds promise for polarization encoding telecommunication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.468533 | DOI Listing |
Chem Soc Rev
September 2025
TUMint. Energy Research GmbH, Lichtenbergstr. 4, Garching 85747, Germany.
The current most mature, competitive, and dominant battery technology for electric vehicles (EVs) is the Li-ion battery (LIB). As future EVs will rely on battery technology, further innovation is essential for the success of mobility electrification towards improving the driving range and reducing the charging time and price competitiveness. The commonly cited next generation technologies are hybrid and solid-state batteries (SSBs) enabling high energy densities using lithium.
View Article and Find Full Text PDFNanophotonics
August 2025
Wangzhijiang Innovation Center for Laser, Aerospace Laser Technology and System Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
The high extinction ratio mode (de)multiplexer is a pivotal component in high capacity mode-division multiplexing data communication and nascent on-chip intermodal acousto-optic modulators. Up to now, high performance on-chip mode (de)multiplexers are still lacking for integrated AOMs on the lithium niobate-on-insulator platform. In this paper, we propose and demonstrate an innovative scheme to achieve high extinction ratio signal routing for acousto-optic modulation, by leveraging a two-mode (de)multiplexer in conjunction with a high- racetrack microring resonator.
View Article and Find Full Text PDFNat Commun
September 2025
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
The surge in artificial intelligence applications calls for scalable, high-speed, and low-energy computation methods. Computing with photons is promising due to the intrinsic parallelism, high bandwidth, and low latency of photons. However, current photonic computing architectures are limited by the speed and energy consumption associated with electronic-to-optical data transfer, i.
View Article and Find Full Text PDFNature
September 2025
State Key Laboratory of Photonics and Communications, School of Electronics, Peking University, Beijing, China.
The forthcoming sixth-generation and beyond wireless networks are poised to operate across an expansive frequency range-from microwave, millimetre wave to terahertz bands-to support ubiquitous connectivity in diverse application scenarios. This necessitates a one-size-fits-all hardware solution that can be adaptively reconfigured within this wide spectrum to support full-band coverage and dynamic spectrum management. However, existing electrical or photonic-assisted solutions face a lot of challenges in meeting this demand because of the limited bandwidths of the devices and the intrinsically rigid nature of system architectures.
View Article and Find Full Text PDFOpt Lett
September 2025
Electro-optic modulators have become an essential component of communication and information infrastructure. However, challenges to stable DC operation result in a requirement for thermal biasing of modulators, which can require high powers and be prohibitive to the deployment of modulators for low-temperature applications. Here, we present stable DC operation of a thin-film lithium niobate modulator at liquid nitrogen accessible temperatures, providing a low-cost alternative to thermal tuning demands and demonstrating accessibility for low-temperature applications.
View Article and Find Full Text PDF