Publications by authors named "Moran Balaish"

The current most mature, competitive, and dominant battery technology for electric vehicles (EVs) is the Li-ion battery (LIB). As future EVs will rely on battery technology, further innovation is essential for the success of mobility electrification towards improving the driving range and reducing the charging time and price competitiveness. The commonly cited next generation technologies are hybrid and solid-state batteries (SSBs) enabling high energy densities using lithium.

View Article and Find Full Text PDF

Classic chemical sensors integrated in phones, vehicles, and industrial plants monitor the levels of humidity or carbonaceous/oxygen species to track environmental changes. Current projections for the next two decades indicate the strong need to increase the ability of sensors to sense a wider range of chemicals for future electronics not only to continue monitoring environmental changes but also to ensure the health and safety of humans. To achieve this goal, more chemical sensing principles and hardware must be developed.

View Article and Find Full Text PDF

Specialized hardware for neural networks requires materials with tunable symmetry, retention, and speed at low power consumption. The study proposes lithium titanates, originally developed as Li-ion battery anode materials, as promising candidates for memristive-based neuromorphic computing hardware. By using ex- and in operando spectroscopy to monitor the lithium filling and emptying of structural positions during electrochemical measurements, the study also investigates the controlled formation of a metallic phase (Li Ti O ) percolating through an insulating medium (Li Ti O ) with no volume changes under voltage bias, thereby controlling the spatially averaged conductivity of the film device.

View Article and Find Full Text PDF

This study aimed at evaluating the contribution of low voltage electric field, both alternating (AC) and direct (DC) currents, on the prevention of bacterial attachment and cell inactivation to highly electrically conductive self-supporting carbon nanotubes (CNT) membranes at conditions which encourage biofilm formation. A mutant strain of Pseudomonas putida S12 was used a model bacterium and either capacitive or resistive electrical circuits and two flow regimes, flow-through and cross-flow filtration, were studied. Major emphasis was placed on AC due to its ability of repulsing and inactivating bacteria.

View Article and Find Full Text PDF

Perfluorocarbons (PFCs) are considered advantageous additives to nonaqueous Li-O battery due to their superior oxygen solubility and diffusivity compared to common battery electrolytes. Up to now, the main focus was concentrated on PFCs-electrolyte investigation; however, no special attention was granted to the role of carbon structure in the PFCs-Li-O system. In our current research, immiscible PFCs, rather than miscible fluorinated ethers, were added to activated carbon class air electrode due to their higher susceptibility toward O attack and to their ability to shift the reaction from two-phase to an artificial three-phase reaction zone.

View Article and Find Full Text PDF

In this work, we present an all-atom molecular dynamics (MD) study of triglyme and perfluorinated carbons (PFCs) using classical atomistic force fields. Triglyme is a typical solvent used in nonaqueous Li-air battery cells. PFCs were recently reported to increase oxygen availability in such cells.

View Article and Find Full Text PDF

Non-aqueous lithium-oxygen batteries are considered as most advanced power sources, albeit they are facing numerous challenges concerning almost each cell component. Herein, we diverge from the conventional and traditional liquid-based non-aqueous Li-O2 batteries to a Li-O2 system based on a solid polymer electrolyte (SPE-) and operated at a temperature higher than the melting point of the polymer electrolyte, where useful and most applicable conductivity values are easily achieved. The proposed SPE-based Li-O2 cell is compared to Li-O2 cells based on ethylene glycol dimethyl ether (glyme) through potentiodynamic and galvanostatic studies, showing a higher cell discharge voltage by 80 mV and most significantly, a charge voltage lower by 400 mV.

View Article and Find Full Text PDF

Metal-air batteries, utilizing the reduction of ambient oxygen, have the highest energy density because most of the cell volume is occupied by the anode while the cathode active material is not stored in the battery. Lithium metal is a tempting anode material for any battery because of its outstanding specific capacity (3842 mA h g(-1) for Li vs. 815 mA h g(-1) for Zn).

View Article and Find Full Text PDF