98%
921
2 minutes
20
Unfolded protein response (UPR) is the mechanism by which cells control endoplasmic reticulum (ER) protein homeostasis. ER proteostasis is essential to adapt to cell proliferation and regeneration in development and tumorigenesis, but mechanisms linking UPR, growth control, and cancer progression remain unclear. Here, we report that the Ire1/Xbp1s pathway has surprisingly oncogenic and tumor-suppressive roles in a context-dependent manner. Activation of Ire1/Xbp1s up-regulates their downstream target Bip, which sequesters Yorkie (Yki), a Hippo pathway transducer, in the cytoplasm to restrict Yki transcriptional output. This regulation provides an endogenous defensive mechanism in organ size control, intestinal homeostasis, and regeneration. Unexpectedly, ablation promotes tumor overgrowth but suppresses invasiveness in a cancer model. Mechanistically, hyperactivated Ire1/Xbp1s signaling in turn induces JNK-dependent developmental and oncogenic cell migration and epithelial-mesenchymal transition (EMT) via repression of Yki. In humans, a negative correlation between and YAP (Yki ortholog) target gene expression specifically exists in triple-negative breast cancers (TNBCs), and those with high or (Bip ortholog) expression have better clinical outcomes. In human TNBC cell lines and xenograft models, ectopic XBP1s or HSPA5 expression alleviates tumor growth but aggravates cell migration and invasion. These findings uncover a conserved crosstalk between the Ire1/Xbp1s and Hippo signaling pathways under physiological settings, as well as a crucial role of Bip-Yki interaction in tumorigenesis that is shared from to humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586321 | PMC |
http://dx.doi.org/10.1073/pnas.2202133119 | DOI Listing |
Front Oncol
August 2025
Department of Infectious Biology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India.
Introduction: Ovarian cancer has a high mortality rate due to late diagnosis, relapse and chemoresistance. miRNAs play a major role in tumorigenesis as well as chemoresistance. Hence, we undertook a study, to evaluate the differential expression of miRNAs in clinical specimens of ovarian cancer patients that may highlight the effect of chemotherapy and their role in predicting survival outcomes.
View Article and Find Full Text PDFTransl Oncol
September 2025
The University of New Mexico, Albuquerque, NM, USA. Electronic address:
Ovarian and endometrial cancers frequently harbor a mutation in the tumor suppressor gene TP53, which occurs in over 90 % of ovarian cancers and in the most aggressive endometrial cancers. The normal tumor suppressive functions of p53 are disrupted, resulting in unregulated cell growth and therapeutic resistance to standard treatments including chemotherapy and PARP inhibitors. Hence, a novel therapeutic strategy is urgently needed for p53 mutant gynecologic cancers, and we propose that converting mutant p53 to a wild type conformation and restoring its tumor suppressive functions has the potential to greatly improve treatment.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
Department of Otolaryngology-Head and Neck Surgery, Maternal and Child Health Hospital of Hubei Province, NO.745 Wuluo Road, Hongshan District, Wuhan, 430070, Hubei Province, China.
Background: Head and neck squamous cell carcinoma (HNSCC) stands as a significant global health concern, marked by its substantial impact on both morbidity and mortality rates. Although previous studies have suggested that circular RNAs (circRNAs) may influence HNSCC progression, the underlying mechanisms remain largely unclear.
Methods: In this study, we first used quantitative real-time polymerase chain reaction (qRT-PCR) to measure the expression levels of circSHPRH in HNSCC tissues and cell lines.
Chem Biol Interact
September 2025
Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 10610, Taiwan; Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan. Electronic address:
Accumulated dysfunctional mitochondria are involved in tumorigenesis, and it is conceivable that mitophagy, a selective form of autophagic degradation of mitochondria, plays a tumor-suppressive role. Our bioinformatics analysis identified lignan justicidin A (JA) as a potential mitophagy inducer. In HRAS-mutant human bladder cancer T24 cells, JA reduced population cell growth, changed mitochondrial membrane potential, and induced autophagy.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Pharmacy college, Al-Farahidi University, Baghdad, Iraq.
Colorectal cancer (CRC) remains a significant global health challenge, necessitating advanced molecular therapies to improve outcomes. The CRISPR/Cas9 genome-editing platform has emerged as a transformative tool in CRC research, enabling precise genomic modifications to suppress tumor progression, enhance chemosensitivity, and modulate oncogenic pathways. This review highlights CRISPR/Cas9 applications in CRC models, including MC38 murine and CaCO-2 cell lines, where targeted gene edits demonstrate tumor-suppressive effects.
View Article and Find Full Text PDF