98%
921
2 minutes
20
Microplastics (MPs) have been widely distributed on Earth and have drawn global concern for freshwater and marine ecosystems. Biodegradable plastics have risen in popularity to replace nonbiodegradable plastics all over the world. The effects of biodegradable plastics on denitrifying and anammox bacteria in freshwater sediment remain largely unknown. In this study, water column reactors containing polylactic acid (PLA) or polybutylene adipate-co-terephthalate (PBAT) MPs in sediment were established to simulate lake ecosystems and analyze the effects of biodegradable MPs on sedimentary nitrogen transformation microorganisms. The total organic carbon (TOC) concentrations in the PLA and PBAT groups were slightly higher than those in the control group, which might be related to the slow degradation of these two plastics. Denitrifying and anammox bacterial diversities decreased after adding MPs to sediments for 30 days, and the dominant OTUs of these two bacteria were differentiated from the control. The abundance levels of nirS denitrifying and anammox bacteria on the PLA MP surface were significantly higher than those in the other groups (P < 0.05), but they were lower in the PBAT groups than in the other groups. As an excellent electron donor for the denitrification process, lactic acid release from PLA degradation resulted in the enrichment of denitrifying and anammox bacteria on the MP surfaces. However, PBAT led to various responses of bacteria in an anaerobic environment. In addition, the redundancy analysis results indicated that total phosphorus, TOC and nitrate were strongly negatively correlated with the abundance levels of denitrifying and anammox bacteria. Our findings provided insight into the effects of MPs, especially the biodegradable ones, on sedimentary nitrogen-transformation bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.120343 | DOI Listing |
J Hazard Mater
September 2025
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China. Electronic address:
Microplastics (MPs) and the plastisphere they form pose substantial ecological risks in aquatic environments and wastewater treatment processes. As a unique niche, the evolution of plastisphere in anaerobic ammonium oxidation (anammox) systems remains poorly understood. This study investigated the physicochemical evolution of polyethylene terephthalate (PET) MPs and microbial succession within the plastisphere during a 30-day incubation with anammox granular sludge.
View Article and Find Full Text PDFEnviron Res
September 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
Partial denitrification coupled with anammox (PD/A) has emerged as a promising low-carbon strategy for energy-efficient nitrogen removal from municipal wastewater. However, the reactivation of PD/A systems following operational disturbances remains challenging, particularly under continuous-flow conditions, where microbial interactions and process stability are more complex than in sequencing batch reactors. This study systematically and first evaluated the recovery dynamics of a continuous-flow PD/A process seeded with low-activity granular sludge stored at 4 °C for three months.
View Article and Find Full Text PDFWater Res
August 2025
College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ocean Academy, Zhejiang University, Zhoushan, 316021, China. Electronic address:
Salinity-driven nitrogen removal mechanisms in iron-carbon CWs (Fe-C-CWs) remain poorly understood for aquaculture tailwater management. Through a 155-day trial under four salinities (designated as S0, S10, S20, and S30), result showed that S20 achieved optimal removals of total nitrogen (84.9 ± 3.
View Article and Find Full Text PDFBioresour Technol
August 2025
Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
This study investigated the impact of bisphenol A (BPA) on nitrogen removal in sulfur autotrophic denitrification-Anammox (SAD/A) microbial consortia. Batch tests revealed a concentration-driven biphasic response: 1 μg/L-50 mg/L BPA stimulated denitrification, increasing nitrate removal efficiency by 9.82-29.
View Article and Find Full Text PDFEnviron Res
August 2025
School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China. Electronic address: chongjun
This study explored the effects of anthraquinone concentration gradients (0.025-0.075 mmol/L) in combination with biochar (10 g/L) on the initiation of an anaerobic ammonia oxidation (anammox) system and the dynamics of associated functional microorganisms.
View Article and Find Full Text PDF